
Cryptographic protocol

Assembly Voting

September 2023

Documentation of the cryptographic protocol

Version 2.1

1

Abstract

End-to-end verifiable voting systems attempt to establish elections where voters
receive assurance that their votes have been cast correctly. At the same time,
auditors can confirm that all ballots have been processed and tallied correctly.
End-to-end verifiability in itself has many challenges, as one always has to find
a balance between security and usability. An accessible digital election system
based on an end-to-end verifiable voting protocol can potentially restore trust in
democratic processes in society. At the same time, it enables voters to exercise
their democratic rights from remote locations. This paper describes the path of
Assembly Voting to achieve an end-to-end verifiable election protocol.

Contents

1 Introduction 2
1.1 Prerequisites . 2
1.2 Intended audience . 2
1.3 Scope and Objectives . 2
1.4 Notation conventions . 3

2 Solution entities 5
2.1 Actors . 5

2.1.1 Election Administrator . 5
2.1.2 Digital Ballot Box . 5
2.1.3 Trustees . 5
2.1.4 Voters . 6
2.1.5 Voter Authorizer . 6
2.1.6 Identity Provider . 6
2.1.7 Credential Authority . 6
2.1.8 External Verifier . 6
2.1.9 Auditors . 6

2.2 Public bulletin board . 7
2.3 Voter Authorization . 8

2.3.1 Vote Submission Authorization - identity based 8
2.3.2 Vote Submission Authorization - credential based 10

2.4 Threshold cryptography . 10

3 Properties 11
3.1 Voter Eligibility . 11
3.2 Votes Privacy . 11
3.3 Votes Anonymity . 11
3.4 Ballot Replacement . 12
3.5 Data Integrity . 12
3.6 Receipt-Freeness . 12

i

3.7 End-to-End Verifiability . 12
3.8 Vote & Go . 12
3.9 Replay Protection . 12

4 Election protocol 14
4.1 Interactions with the Digital Ballot Box 16

4.1.1 Writing on the bulletin board 16
4.1.2 Verifying bulletin board items 17

4.2 Bulletin board initialization . 19
4.3 Election configuration . 19

4.3.1 Election configuration . 19
4.3.2 Voting rounds configuration 20

4.4 Actor authorization . 20
4.4.1 Voter authorization configuration 20

4.5 Voter credentials distribution process 21
4.6 Threshold ceremony . 21
4.7 Voting . 22

4.7.1 Voter authorization procedure - identity based 22
4.7.2 Voter authorization procedure - credential based 25
4.7.3 Mapping vote options on the Elliptic Curve 26
4.7.4 Vote cryptogram generation process 27
4.7.5 Vote confirmation receipt 31

4.8 Ballot checking . 32
4.9 Ballot extraction . 39

4.9.1 Extraction procedure . 39
4.9.2 Mixing Phase . 40
4.9.3 Decryption Phase . 40
4.9.4 Result Interpretation . 43

5 Auditing 44
5.1 Individual voter verifications . 44

5.1.1 Vote is cast as intended 44
5.1.2 Vote is registered as cast 45

5.2 Administration auditing process 45
5.2.1 Eligibility verifiability . 46

5.3 Public auditing process . 47
5.3.1 Integrity of the bulletin board 47
5.3.2 Verification of the extraction procedure 48
5.3.3 Result verification . 48

6 Conclusion 50

References 55

A Bulletin board item types 56

ii

B Algorithms background 62
B.1 Elliptic Curve . 62

B.1.1 Supported elliptic curves 62
B.1.2 Mapping a message on the Elliptic Curve 62

B.2 Hash functions . 63
B.3 Discrete Logarithm Proof . 64
B.4 Elgamal cryptosystem . 66

B.4.1 Encryption scheme . 66
B.4.2 Homomorphic Encryption 67

B.5 Threshold Cryptosystem . 68
B.6 Symmetric encryption . 73
B.7 Key derivation . 73

B.7.1 Diffie Hellman key derivation function 73
B.7.2 Password-based key derivation function 74

B.8 Schnorr digital signature . 75
B.9 Pedersen commitment . 76
B.10 Groth argument of shuffle . 77

1

1 Introduction

This document presents all the technical details of the cryptographic protocol
used in the Assembly Voting election solution. It describes the second version
of the protocol of an end-to-end verifiable digital election system.

1.1 Prerequisites

There are no hard prerequisites beyond the knowledge specified in the in-
tended audience section. However, it is recommended to review the System
Architecture[?] and System Configuration[?] documents for a more comprehen-
sive understanding of the system. Although this document is self-contained
concerning the cryptographic processes required for the election protocol, the
aforementioned documents provide broader context that may aid in understand-
ing the entire system.

1.2 Intended audience

The document is primarily targeting cryptographers or technical, mathematical
readers. This document is intended as an argumentation for the security claims
we make about the election protocol. It contains plain language descriptions in
the body of the document and mathematical descriptions of all algorithms are
provided in the appendices.

1.3 Scope and Objectives

The election protocol incorporates several core features, including remote vot-
ing by voters, encryption of votes, the utilization of threshold cryptography,
cryptographic shuffling of votes to ensure anonymity, verifiability of all essential
processes, and the ability to perform audits on all system components through-
out the election event. Although the system cannot always prevent fraud or
unauthorized access, it can detect them.

The scope of this document is limited to the cryptographic protocol and the
proof of the properties listed below. Other cybersecurity concerns, relating to
system architecture and configuration, are addressed in separate documents.
The protocol encompasses the entire election event, including election config-
uration, voter authorization, vote casting, tallying, and auditing. While cryp-
tographic algorithms are essential for the security and auditing features of the
system, many non-cryptographic processes are also necessary to conduct a safe
election. This document describes an online election system accessed by users,
i.e., election officials and voters, through a web browser or a native application
on an internet-connected device such as a PC, laptop, tablet, smartphone, etc.

2

Throughout the election protocol, various components are tasked with gener-
ating cryptographic key pairs. It is incumbent upon each of these components
to safeguard their respective private keys, ensuring their secrecy and security.
The responsibility of the components to retain and protect their private keys is
of paramount importance, given the potential vulnerabilities that might arise
should they be compromised. Nonetheless, while significant care has been ded-
icated to the manner in which the system manages its keys, the details of this
process, as well as the safeguards in place, are beyond the purview of this doc-
ument. Comprehensive discussions on these key management strategies and
related safety precautions can be found in accompanying documentation.

The primary objective of this document is to describe, claim, and argue the
achievement of the following properties of our protocol, which are elaborated in
greater detail in section 3:

• Voter Eligibility

• Voters Privacy

• Votes Anonymity

• Ballot Replacement

• Data Integrity

• Receipt-Freeness

• End-to-End Verifiability

• Vote & Go

• Replay Protection

1.4 Notation conventions

The following notation conventions are used throughout the document:

• use italic font Greek and Latin characters to display variables α, σ, x, y, z,

• use 1-based indexed arrays {a1, ..., an},

• generally, use n for the length of an array and ` for the height of a matrix,

• use the equal symbol to denote the structure of a variable t = (x, y, z),

• use an arrow symbol on top of the variable to denote a vector ~a =
{a1, ..., an},

• generally, use letters i and j in subscript as indexes ai ∈ ~a,

• use regular font subscript to denote the context of a variable use xcnf ,

• use double-struck font style to denote sets of elements N, Z,

• use superscript to denote the size of a vector ~a ∈ Zn; no superscript implies
size 1,

• use subscript Nq = {0, 1, ..., q − 1} to define a subset with q elements,

• use symbol ← to denote variable assignment x← 0,

3

• use symbol ∈R to denote random assignment from a set x ∈R Z,

• use calligraphic font style to denote an actor in the protocol T ,

• use bold calligraphic font style to denote a set of actors V = {V1, ...,Vn},

• use san-serif font style to declare algorithms Algorithm(x, y),

• use typewriter font style to declare protocols Protocol,

• use symbol H to denote a hash function,

• in elliptic curve context, use lower case letter for scalars and upper case
for point variables q, G,

• in elliptic curve context, use notation [x]G as point multiplication

• generally, use the notation (x, Y) to denote private-public key pairs and
mark them with subscripts for specific contexts,

• generally, assume elliptic curve domain parameters (p, a, b,G, q, h) known
and available to all algorithms and protocols.

4

2 Solution entities

This section describes the different concepts seen throughout the document.

2.1 Actors

2.1.1 Election Administrator

The Election Administrator Component, denoted as E , serves as a pivotal point
in the cryptographic election process. Hosted by a designated organization,
it is an online application through which all election officials interact for the
purposes of setting up, configuring, and updating an election event.

The primary responsibility of E is to lay down the foundation for the election
by determining its configurations. It is paramount for election officials to access
this service, and this is facilitated through a pre-defined set of authentication
credentials ensuring security and integrity.

To ensure the authenticity and integrity of the configurations, E is equipped with
a key pair: a public key YE and a corresponding private key xE . The private key
is of particular importance and is securely stored by the election administrator
to prevent unauthorized access or malicious manipulations. Configurations are
signed using this key pair, assuring their genuineness and credibility.

2.1.2 Digital Ballot Box

The Digital Ballot Box, D, is the central communication unit interacting with
all other parties. It is publicly accessible via the internet and contains a bulletin
board with all public information about an election, categorized into configu-
ration data, voting data, and result data. The Digital Ballot Box owns a key
pair (xD, YD) used for signing data on the bulletin board and is responsible for
privately storing its private key xD.

2.1.3 Trustees

Trustees, denoted as Ti, where i ∈ {1, ..., nt} and nt is the total number of
trustees, are election officials responsible for preserving the secrecy of voting
data and actively participating in result computation. They use the trustee
application to perform all cryptographic processes involved in the protocol and
are responsible for building the election encryption key, safely storing their
shares of the decryption key, and destroying the keys after the election event
has ended.

5

2.1.4 Voters

Predefined voters, denoted as Vi, where i ∈ {1, ..., nv} and nv is the total num-
ber of voters, generate all voting data using the voting application. They own
credentials that authorize them to cast a digital ballot and have an interest in
verifying that their vote is processed correctly and included in the final tally.
During the protocol, the voting application generates a key pair (xi, Yi), repre-
senting the cryptographic identity of voter Vi.

2.1.5 Voter Authorizer

The Voter Authorizer, A, is responsible for authorizing a Voter V after being
authenticated with all Identity Providers and for preserving the election eligi-
bility property. It owns a key pair (xA, YA) used for signing voter authorization
and is responsible for privately storing its private key xA.

2.1.6 Identity Provider

Identity Providers, denoted as Ii, where i ∈ {1, ..., ni} and ni is the total number
of identity providers, are third-party applications responsible for authenticating
a voter V during the election phase and must follow the OIDC protocol.

2.1.7 Credential Authority

Credential Authorities, denoted as Ci, where i ∈ {1, ..., nc}, are third-party in-
stitutions responsible for generating and distributing voter credentials, which
are necesarry for the voter authorization proces. It is recommended that each
Credential Authority use a different communication channel for credential dis-
tribution, e.g., e-mail, post, SMS.

2.1.8 External Verifier

The External Verifier, X , is an auditing tool used by voters to perform ballot
verification processes (section 4.8). It allows voters to check that their vote has
been correctly encrypted and stored on the bulletin board. During this process,
the External Verifier generates a new key pair (xX , YX) and must protect its
private key xX .

2.1.9 Auditors

Public auditors, possessing the proper auditing tools, can audit the election
process without having an active role in the election process or the election

6

system noticing. Most of the time, auditing happens without the election system
noticing.

2.2 Public bulletin board

The digital ballot box publishes all election events as items on a publicly ac-
cessible bulletin board. Each item on the board is authored by a relevant actor
and describes a specific event, uniquely identified by its address (i.e., the hash
value of the item). The address of the last item represents the board hash value
at that moment. All events are stored in an append-only list, ensuring no event
can be removed or replaced, and new events are appended at the end. This
structure was inspired by The Append-Only Web Bulletin Board [1].

Our approach differs from The Append-Only Web Bulletin Board [1] in that to
append a new item, the writer must include the address of any existing board
item as part of the new item, instead of only the previous item. This reference is
called the parent item. The digital ballot boxD computes the new item’s address
by hashing its content (including the parent item reference) concatenated with
the current board hash value, the address of the previous item, and a registration
timestamp. D then signs the new item’s address and delivers it to the writer as
proof of the new item’s acceptance on the board. This ensures the new item is
linked to the previous one.

As a result, each bulletin board item references two other items:

• an existing item chosen by the writer as the parent item,

• and the previous item on the board.

This modification ensures the digital ballot box protects the history property
described in The Append-Only Web Bulletin Board [1]. Additionally, a new
ancestry property is introduced, defined by items being meaningfully related.
Thus, traversing the ancestry line reveals a tree-like structure, while the history
line appears linear.

We also introduce a hidden verification track for the ballot checking process
described in section 4.8. It is:

• hidden because it is not publicly available on the bulletin board, but can
be requested using the address of a specific item,

• verification because it is used only for ballot checking,

• track because it spawns an extra history of events injected under a specific
item from the main history.

Consequently, any ith bulletin board item bi consists of the following structure
(mi, ci,W, σi, ti, pi, h

′
i, hi), where:

• mi is the item type,

7

• ci is the content describing the event,

• W is a reference to the item writer,

• σi is the writer’s signature,

• pi is the parent item address, with pi ∈ {h1, ..., hi−1},

• h′i is the previous item address in the history (i.e., h′i = hi−1),

• ti is the registration timestamp,

• hi is the item address.

Different item types (i.e., possible values of mi) and the events they represent
are detailed in appendix A. Rules about how items can reference parent items
and which actors can write them are outlined there.

To write a new item on the bulletin board, a writer must follow the protocol
described in section 4.1.1. The following actors are allowed to write on the
bulletin board:

• Election Administrator E , responsible for writing all election configuration
events.

• Voter Authorizer A, authorizing voters to interact with the digital ballot
box based on successful authentication.

• Voters Vi, with i ∈ {1, ..., nv}, writing all vote-related events of an election.

• Digital Ballot Box D, ultimately accepting all events published on the bul-
letin board and writing all auxiliary events supporting the voting process.

• External Verifier X , writing events related to the ballot checking process
on the hidden verification track of the bulletin board.

2.3 Voter Authorization

2.3.1 Vote Submission Authorization - identity based

During the pre-election phase, the voter authorizer service A lists a set of third-
party identity providers I = {I1, ..., Ini

}, where ni is the number of them.
Then, the voter authorizer service is loaded with a list of eligible voters V =
{V1, ...,Vnv

}, where nv is the total number of voters. Each voter Vi is defined
by a set of identities supported by each of the identity providers I.

To be authorized to cast a vote on the bulletin board, a user has to authenticate
to all identity providers I and receive identity tokens. Then, the user submits
them to the voter authorizer service which checks whether all identities match
a voter Vi ∈ V . If successful, the voter Vi is authorized to cast a ballot on the
bulletin board. The process is further described in section 4.7.1.

8

Once authenticated and authorized, voter Vi can interact directly with the dig-
ital ballot box in the voting protocol as described in section 4.7.4.

9

2.3.2 Vote Submission Authorization - credential based

During the pre-election phase, the voter authorizer service A interacts with a
set of Credential Authorities C = {C1, ..., Cnc

} to generate and distribute voter
credentials, as described in section 4.5. The voter authorizer is loaded with
the eligible voters V = {V1, ...,Vnv

}, where each voter Vi is defined by contact
information for each communication channel used by all credential authorities.

To be authorized to cast a vote on the bulletin board, a user has to provide
all credentials received from each authority and convert them into proofs of
credentials. Then, the user submits the proofs to the voter authorizer service
which checks whether they match a voter Vi ∈ V . If successful, the voter Vi
is authorized to cast a ballot on the bulletin board. The process is further
described in section 4.7.1.

Once authenticated and authorized, voter Vi can interact directly with the dig-
ital ballot box in the voting protocol as described in section 4.7.4.

2.4 Threshold cryptography

Threshold cryptography offers an innovative approach to cryptographic key
management and sensitive operations. In a traditional cryptographic system,
a singular entity possesses the cryptographic key, which if compromised, can
jeopardize the entire system. Threshold cryptography, however, divides a secret
(such as a private key) among multiple parties, termed trustees. In order for
a sensitive operation to be executed or the secret to be reconstructed, a pre-
defined number of these trustees, the threshold, must cooperate. This ensures
that no single trustee has absolute power or knowledge of the entire secret. By
distributing the trust among several entities, the vulnerability associated with
a single point of failure is greatly reduced.

In the context of our election system, threshold cryptography offers numerous
advantages. First and foremost, it ensures that no singular entity has control
over sensitive election operations, thereby enhancing security and trustworthi-
ness. Additionally, it provides flexibility and resilience; for instance, if one or
more trustees are unavailable or their components are compromised, the elec-
tion process can still proceed as long as the threshold number of trustees are
operational. This not only improves the robustness of the election system but
also allows election officials to manage risks more effectively by setting an ap-
propriate threshold.

10

3 Properties

The protocol exhibits the following properties, which hold true under current
known conditions. However, these properties depend on certain assumptions
about the system configuration and the capabilities of potential attackers or
malicious actors. General assumptions that apply to all properties:

• An attacker computational power is assumed to be polynomially bounded.

• The elliptic curve discrete logarithm problem is assumed to be infeasible
to break, as described in Guide to Elliptic Curve Cryptography [2].

3.1 Voter Eligibility

The voter eligibility property is defined as the fact that only a limited number
of predefined voters can cast a valid vote. The property requires the following
assumptions:

• There is at least one honest third-party identity provider that generates
genuine identity tokens upon successful voter authentication.

• The administration auditing process (section 5.2) is trustworthy, i.e., an
honest election official runs genuine auditing tools on real election data.

3.2 Votes Privacy

The votes privacy property implies that no entity can read a partial result or
any votes before the intended time. This is to prevent influencing subsequent
voters throughout the election period, as voters’ initial intentions may change if
the current results were publicized. The property requires the assumption that:

• There are no more than t malicious trustees or compromised trustee appli-
cations, where t is the decryption threshold configured during the thresh-
old ceremony (section 4.6).

3.3 Votes Anonymity

The votes anonymity property implies that no single entity can determine how
a particular voter voted. The property is reached on the following assumptions:

• The ballot marking application does not leak voter secret information.

• There is at least one honest trustee that participate in the mixing phase
of the result computation process.

11

3.4 Ballot Replacement

Ballot replacement allows voters to overwrite their votes, enabling them to vote
multiple times. However, only the most recent vote submitted by a voter will
be taken into account in the final tally.

3.5 Data Integrity

The data integrity property implies mechanisms for verifying the origin and
authenticity of the data published on the bulletin board. The property requires
the assumption that:

• The integrity audit (section 5.3.1) is trustworthy, i.e., an honest election
official runs genuine auditing tools against real election data.

3.6 Receipt-Freeness

The receipt-freeness property is defined as the fact that voters cannot prove to
a third party how they voted after they submitted the encrypted ballot.

3.7 End-to-End Verifiability

End-to-end verifiability is a set of mechanisms for verifying the correct process-
ing of votes, consisting of three verification steps: cast as intended, registered
as cast, and counted as registered. The property is reached on the following
assumptions:

• A voter uses at least one trusted device, e.g., either the voting application
device or the external verifier device.

• There are multiple external verifier deployments, out of which at least one
is considered trustworthy by the voter.

3.8 Vote & Go

The Vote & Go approach stipulates that voters need to actively participate only
during the voting phase, while the computation of results can be conducted
independently without voter interaction.

3.9 Replay Protection

Replay protection is a security measure that prevents an adversary from cap-
turing and replaying a valid set of actions or data to compromise a system.

12

It ensures that any captured information or actions cannot be reused to gain
unauthorized access or perform malicious activities.

13

4 Election protocol

This section describes the entire election protocol which is split into three main
phases:

• the pre-election phase, where the election context is created and all com-
ponents are configured,

• the election phase, where the actual votes are being generated and stored,

• and the post-election phase, where the election result is finalized and au-
dits are performed on system components.

All of these phases consist of different processes that are triggered by specific
stakeholders. A map of all processes is presented in figure 1, where the leftmost
label lists the process name, the circled label defines the actor that triggers the
process (EO for election official, T for trustee, V for voter and PA for public
auditor), and the following empty circles indicate the system components that
are involved in the process.

The election process is started by an election official initializing a digital ballot
box, as presented in section 4.2, and setting up the election configuration as in
section 4.3. Then, the trustees perform the threshold ceremony, as described in
section 4.6. In case voter authorization mode is credential-based, during the
pre-election phase, voters receive their credentials as described in section 4.5.

During the election phase, voters can get authorized to cast a vote and then
perform the voting process as described in section 4.7. Optionally, voters can
perform a verification of their encrypted ballots, as described in section 4.8.
More about voter-specific auditing is presented in section 5.1.

In the post-election phase, election officials run an administration auditing pro-
cess to check that the election system behaved correctly, as described in sec-
tion 5.2. Any public auditor can run a public auditing process on the entire
election process, as presented in section 5.3. Also, during this time, trustees
can compute the election result, as presented in section 4.9.

All the processes listed above involve appending data on the public bulletin
board in the form of board items. The protocol for writing an item on the
bulletin board is described in section 4.1.1.

14

pre-election phase

election phase

post-election phase

EO

EO

T

EO

V

V

V

EO

T

PA

Bulletin board
initialization

Election
configuration

Treshold
ceremony

Credentials
distribution

Voter
Authorization

Voting

Ballot
checking

Result
ceremony

Administration
auditing process

Public auditing
process

E
le

ct
io

n
A

dm
in

E
xt

re
na

l
V

er
ifi

er

D
ig

it
al

B
al

lo
t

B
ox

C
re

de
nt

ia
ls

A
ut

ho
ri

ty

Id
en

ti
ty

P
ro

vi
de

r
A

dm
in

au
di

ti
ng

sc
ri

pt

P
ub

lic
au

di
ti

ng
sc

ri
pt

T
ru

st
ee

ap
pl

ic
at

io
n

V
ot

er
A

ut
ho

ri
ze

r

V
ot

in
g

ap
p

Figure 1: Processes map

15

4.1 Interactions with the Digital Ballot Box

4.1.1 Writing on the bulletin board

The election protocol allows a predefined set of actors to write events on the
bulletin board. They are described in section 2.1 and consist of:

• the Election Administrator E ,

• the Digital Ballot Box D,

• the Voter Authorizer A,

• each Voter Vi,

• and the External Verifier X .

For the sake of generalization, protocol 2 presents the interaction between a
generic writer W and the digital ballot box D necessary for publishing the ith

item on the bulletin board. We define (bi, ρi)← WriteOnBoard(W,mi, ci, pi) as
the interaction of W and D that outputs a new item bi and its receipt ρi.

Writer W Digital Ballot Box D

internal knowledge: xW , YD,
mi, ci, pi

internal knowledge: xD, YW ,
b = {b1, ..., bi−1}

σi ← Sign(xW ;mi||ci||pi)
σi, mi, ci, pi

verify that mi, ci and pi comply to the
rules according to appendix A and
SigVer(YW , σi;mi||ci||pi) then:

ti ← current timestamp
h′i ← address of the previous item bi−1

hi ← H(mi||ci||pi||h′i||ti)
ρi ← Sign(xD;σi||hi)
bi ← (mi, ci,W, σi, ti, pi, h

′
i, hi)

b← b ∪ {bi}
ρi, ti, h

′
i, hi

verify that hi = H(mi||ci||pi||h′i||ti)
and SigVer(YD, ρi;σi||hi) then:

bi ← (mi, ci,W, σi, ti, pi, h
′
i, hi)

Protocol 2: WriteOnBoard(W,mi, ci, pi)

The publicly available information consists of: the public key of the writer YW ,
the public key of the digital ballot box YD and all of the existing items on the

16

bulletin board b = {b1, ...bi−1}. The writer has his private key xW , while the
digital ballot box knows its private key xD.

The protocol starts with the writer actively choosing the event type mi and
the content ci to be appended on the bulletin board as the ith item. Next, the
writer chooses a pre-existing item on the bulletin board as the parent of the new
item. The parent item is referenced by its address pi ∈ h, where h is the set of
all addresses of the pre-existing board items b. All event types, the contained
data, and the choice of their parent item are described in the appendix A.

The writer signs with his private key xW the concatenation of the new item type,
the content, and the parent address. The signature σi ← Sign(xW ;mi||ci||pi)
(algorithm 28) is sent with the item type mi, content ci and parent address pi
to the digital ballot box as a request to append a new item on the board.

The digital ballot box verifies whether mi, ci, and pi are chosen according to
the rules specified in appendix A and whether the request has a valid signa-
ture. If all validations succeed, it computes the address of the new item hi
by hashing a concatenation of the type of the new item mi, its content ci, its
parent address pi, the current board hash value h′i = hi−1, and the registra-
tion timestamp ti. It then stores the new item on the bulletin board as item
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi), where W is a reference to the writer.

The digital ballot box signs with its private key xD the concatenation of the
writer’s signature σi and the address of the new item hi. The resulting signature
ρi is sent together with the registration timestamp ti, the new board hash value
hi, and the previous board hash value h′i to the writer as proof that the item
has been appended on the board. Finally, the writer verifies that the address of
the new item is computed correctly and that the response has a valid signature.

Note that, when the protocol is performed by a specific writer, e.g., voter Vi,
the writer’s key pair (xW , YW) will be replaced by the voter’s key pair (xi, Yi).

4.1.2 Verifying bulletin board items

Because of the two bulletin board properties listed in section 2.2, namely history
and ancestry, there exist two auditing algorithms. Given a list of items b =
{b1, ..., bn}, an auditor can run AncestryVer(b, h0) (algorithm 1) to check the
ancestry of b, where h0 is the parent of b1. Similarly, the auditor can run
HistoryVer(b, h0) (algorithm 2) to check the history property of b, where h0 is
the address of the previous item of b1.

In addition, we define ItemVer(b, YW) (algorithm 3) as a publicly available au-
diting algorithm to check the integrity of any bulletin board item b against its
writer’s public key YW .

17

Algorithm 1: AncestryVer(b, h0)

Data: The ancestry of board items b = {b1, ..., bn}, with
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi) and pi, h

′
i, hi ∈ B256, where i ∈ {1, ..., n}

The address of the parent of the ancestry h0 ∈ B256

for i← 1 to n by 1 do
if hi 6= H(mi||ci||pi||h′i||ti)
or pi 6= hi−1 then

return 0 // ancestry is invalid

end

end
return 1 // ancestry is valid

Algorithm 2: HistoryVer(b, h0)

Data: The history of board items b = {b1, ..., bn}, with
bi = (mi, ci,W, σi, ti, pi, h

′
i, hi) and pi, h

′
i, hi ∈ B256, where i ∈ {1, ..., n}

The address of the previous item in the history h0 ∈ B256

for i← 1 to n by 1 do
if hi 6= H(mi||ci||pi||h′i||ti)
or h′i 6= hi−1 then

return 0 // history is invalid

end

end
return 1 // history is valid

Algorithm 3: ItemVer(b, YW)

Data: The board item b = (m, c,W, σ, t, p, h′, h)
The public key of the writer YW

if h = H(m||c||p||h′||t)
and SigVer(YW , σ;m||c||p) // algorithm 29

then
return 1 // item is valid

else
return 0 // item is invalid

end

18

4.2 Bulletin board initialization

An election official selects the elliptic curve domain parameters (p, a, b,G, q, h)
from a predefined set, listed in appendix B.1.1. Based on these parameters, the
election administrator service generates a new key pair (xE , YE) ← KeyGen()
(algorithm 16), where xE is its signing key and will be kept secret throughout
the election, while YE is its public signature verification key. Next, the election
administrator requests the digital ballot box to initialize a new bulletin board
with the initial election meta-data configuration (including the elliptic curve
domain parameters and the public key YE).

On this request, the digital ballot box generates a new key pair (xD, YD) ←
KeyGen() (algorithm 16), where xD is its signing key and will be kept secret
throughout the election period, and YD is its public signature verification key.
From this, it spawns a new bulletin board by generating a genesis item as the
first item of the board (b1, ρ1) ← WriteOnBoard(D,m1, c1, p1) (protocol 2),
where m1 = ”genesis”, p1 = ∅, and the content c1 is constructed according
to the rules specified in appendix A. Next, the digital ballot box returns to
the election administrator with the freshly created genesis item b1. From this
point on, the election administrator service and the digital ballot box represent
identities E and D respectively on the bulletin board.

4.3 Election configuration

4.3.1 Election configuration

Once a bulletin board exists, an election official can interact with the election
administrator E to write all of the configuration items on the bulletin board by
following WriteOnBoard(E ,mi, ci, pi) (protocol 2). All items are computed and
published one by one, based on the rules defined in appendix A. All items are
signed with the election administrator signing key xE and they reference the
address of the previous configuration item (pi = hi−1) as a parent. The items
which make up the initial configuration are:

• the election configuration item, containing

– election title

• contest configuration items for each contest containing

– the contest identifier,

– marking rules,

– result rules,

– list of candidates {m1, ...,mnc
}, with each mi ∈ B∗.

19

4.3.2 Voting rounds configuration

An election official interacts with the election administrator service to define
when the election phase will take place, namely by setting a start and end date.
Then, the election administrator E writes a voting round item on the bulletin
board by following WriteOnBoard(E ,mi, ci, pi) (protocol 2) based on the rules
from appendix A, specifying the start and end date, and the enabled contests.

For a regular election, a single voting round is sufficient. However, multiple
voting rounds can be configured to start at different times, and various contests
could be enabled in each voting round.

4.4 Actor authorization

For each actor, the Election Administrator service interacts with the other
services, e.g., the voter authorizer, to generate its own key pair (xA, YA) ←
KeyGen() (algorithm 16). Value xA is the voter authorizer signing key and will
be kept secret throughout the election period, while YA is its public signature
verification key and is shared with the election administrator. Next, the elec-
tion administrator E writes an actor configuration item on the bulletin board
by following WriteOnBoard(E ,mi, ci, pi) (protocol 2) based on the rules from
appendix A. The item contains: the actor identifier, the actor’s public key YA,
and the actor role, e.g. ”voter authorizer”.

Once the actor configuration item is published on the bulletin board, the voter
authorizer becomes identity A and can interact with the digital ballot box.

4.4.1 Voter authorization configuration

An election official interacts with the Voter Authorizer service to configure
the voter authentication process and to provide the list of eligible voters V =
{V1, ...,Vnv}.

Additionally, if the voter authorization mode is identity-based, the election of-
ficial selects a list of third-party identity providers I = {I1, ..., Ini} used for
voter authentication. Note that each voter Vi is defined by a unique identifier
and a list of identities supported by all of the identity providers.

Otherwise, if the voter authorization mode is credential-based, each voter Vi is
defined by a unique identifier and a list of contact information supported by
each Credential Authority in C.

Finally, the voter authorizer writes the voter authorization configuration item on
the bulletin board by following WriteOnBoard(A,mi, ci, pi) (protocol 2) based
on the rules defined in appendix A. The item is signed by the voter authorizer
signing key xA. If the voter athorization mode is identity-based, the item

20

contains the list of identity providers Ij , with j ∈ {1, ..., ni}, each defined by
their public key YIj .

4.5 Voter credentials distribution process

In case the voter authentication mode is credential-based, each credentials
authority Cj ∈ C, receives a list of voters consisting of contact details for
each voter {a1, ..., anv

} in the form of e-mail addresses, postal addresses or
phone numbers, depending on the credentials authority’s communication chan-
nel. The authority generates random credentials ci,j ∈R B` for each voter,
with i ∈ {1, ..., nv}. The authority distributes the credential ci,j to a specific
voter Vi (using that voter’s contact details ai) and appends the correspond-
ing public authentication key Yauth;i,j in the list of voters next to Vi, where
(xauth;i,j , Yauth;i,j)← Pass2Key(ci,j) (algorithm 26).

Credentials can be generated as a random string of alphanumeric characters,
bound by the level of entropy `. It is recommended that credentials are based
on at least 80 bits of entropy (` ≥ 80). That corresponds to a 14-character
alphanumeric code that is sent to the voter as credentials.

All credentials authorities Cj ∈ C return the lists with voters’ contact details
and public authentication keys (ai, Yauth;i,j) to the voter authorizer. The voter
authorizer then combines all keys received from all credentials authorities for
each voter to form the voter’s public authentication key Yauth;i =

∑nc

j=1 Yauth;i,j .

For authenticating to the voter authorizer, the voter Vi ∈ V must input all
credentials {ci,1, ..., ci,nc} received from all credentials authorities in the voting
application. The application will thereafter derive keys from each credential
(xauth;i,j , Yauth;i,j) ← Pass2Key(ci,j) (algorithm 26) and aggregate all of them
to form the voter’s private authentication key xauth;i =

∑nc

j=1 xauth;i,j (mod q).
The private authentication key is used to compute a proof of credentials PKauth,
as described in section 4.7.1, which is used to authenticate the voter.

4.6 Threshold ceremony

An election official defines the lists of trustees T = {T1, ..., Tnt}. Then, the
election official coordinates the threshold ceremony during which all trustees
Ti ∈ T participate in the protocol from figure 12 described in appendix B.5.
The protocol will generate the election encryption key Yenc and each trustee’s
share of the decryption key sxi. The election official sets the threshold value t,
such that any t out of the nt trustees can perform the decryption of ballots.

At the end of the ceremony, the election official interacts with the election ad-
ministrator service which writes the threshold configuration item on the bulletin
board by following WriteOnBoard(E ,mi, ci, pi) (protocol 2) based on the rules
defined in appendix A. The content of the item ci consists of:

21

• election encryption key Yenc and the threshold setup t-out-of-nt,

• public keys of each trustee YTi , with i ∈ {1, ..., nt},

• public polynomial coefficients of each trustee PTi,j , with j ∈ {1, ..., t− 1}.

Finally, trustees validate that the threshold configuration item published on
the bulletin board corresponds with the data generated by them during the
threshold ceremony.

4.7 Voting

During the election phase, any voter Vi ∈ V can cast a valid digital ballot by
performing the following steps:

• obtain the ancestry of configuration items αcnf for the digital ballot box,

• authenticate and become authorized to cast a digital ballot on the bulletin
board as described in section 4.7.1 or section 4.7.2 ,

• select and encode vote choices as described in section 4.7.3,

• encrypt the ballot following the process from section 4.7.4,

• cast the ballot and obtain a vote confirmation receipt as in section 4.7.5.

4.7.1 Voter authorization procedure - identity based

When the authorization procedure is identity based, a voter Vi must follow the
protocol from figure 3 to get authorized to submit a digital ballot. Specifically,
the voter must authenticate and receive identity tokens σid,j from all identity
providers Ij ∈ I which the voter authorizer has configured in the pre-election
phase. The voting application then generates a key pair (xi, Yi) ← KeyGen()
(algorithm 16) and forwards all identity tokens {σid,1, ..., σid,ni} and the public
key Yi to the voter authorizer service A proving the identity of the voter Vi.

If the voter authorizer service can validate all identity tokens and the voter is
eligible, i.e., Vi ∈ V , it will authorize the use of the public key Yi for the voter
Vi. This is done by the voter authorizer A interacting with the digital ballot
box D in the protocol 2 WriteOnBoard(A,mvs, cvs, pvs) to write a voter session
item bvs on the bulletin board as the next item. This occurs according to the
rules specified in appendix A, where mvs = ”voter session”, the parent pvs is
the address of the latest configuration item, and the content cvs consists of the
voter identifier, the public key Yi, and the authentication fingerprint computed
by hashing all identity tokens received from the voter.

The voter authorizer returns the voter session item bvs to the voter as received
from the digital ballot box. The voting application checks the item according

22

to the validations of protocol 2. Additionally, it verifies that the item is consis-
tent according to the configuration ancestry αcnf , i.e., AncestryVer({bvs}, hcnf)
(algorithm 1), where hcnf is the address of the last item in αcnf . From this point
on, the voter can interact directly with the digital ballot box as the identity Vi.

Note that the voter has extracted from the configuration items αcnf all the
necessary values, such as the public keys of the voter authorizer YA, of the
digital ballot box YD, and of each identity provider YIi .

23

Voter Vi Voter Authorizer A Identity Provider Ij
internal knowledge: YA, YD,
{YI1 , ..., YIni

}, αcnf

internal knowledge: xA, V,
{YI1 , ..., YIni

}, αcnf

internal knowledge: xIj

authenticate as Vi

σid,j ← Sign(xIj ;Vi)σid,j

verify that SigVer(YIj , σid,j ;Vi)

when successfully authenticated with all Ij ∈ I and received {σid,1, ..., σid,ni
}

(xi, Yi)← KeyGen() Yi, {σid,1, ..., σid,ni}

verify that Vi ∈ V and SigVer(YIj , σid,j ;Vi), with j ∈ {1, ..., ni} then:

cvs ← (Vi, Yi,H(σid,1||...||σid,ni))
mvs ← ”voter session”, pvs ← the address of the latest item from αcnf

A and D perform protocol 2 to write bvs as the next item of the bulletin board

(bvs, ρvs)← WriteOnBoard(A,mvs, cvs, pvs)

internally store the tuple for auditing: (Vi, {σid,1, ..., σid,ni})bvs

hcnf ← the address of the latest item in αcnf

cvs ← the content of bvs

verify AncestryVer({bvs}, hcnf), ItemVer(bvs, YA)
and that cvs = (Vi, Yi,H(σid,1||...||σid,ni))

Figure 3: Identity-based voter authentication protocol

24

The voter authorizer service stores a link between the voter identity Vi and
all related identity tokens for the administrative auditing process in the post-
election phase, as described in section 5.2. This link is stored privately by
the voter authorizer service since the identity tokens likely contain personal
information that must not be disclosed on the public bulletin board.

4.7.2 Voter authorization procedure - credential based

When the authorization procedure is credential based, a voter Vi has to follow
the protocol from figure 4 to get authorized to cast a digital ballot on the bulletin
board. Specifically, the voter must prove possession of credentials associated
with the voter’s authentication public key Yauth;i.

Voter inputs the credentials received from each credentials authority {c1, ..., cnc
}

into the voting application. All credentials get converted into the voter’s au-
thentication key pair (xauth;i, Yauth;i), where the private key xauth;i is computed
by adding together all keys derived from each credential cj (by using algo-
rithm 26 Pass2Key(cj)), with j ∈ {1, ..., nc}. The public key is computed by
Yauth;i ← [xauth;i]G. Based on the private key, the voting application computes
PKauth ← DLProve(xauth;i, {G}) (algorithm 14) as the proof of credentials.

Then, the voting application generates a new key pair (xi, Yi) to be used as the
signing/signature verification keys in the upcoming voter session. The voting
application sends the proof PKauth and the public key Yi to the voter authorizer
proving possession of credentials of voter Vi. The voter authorizer checks that
the proof is valid and whether it was generated by an eligible voter from V .

If the authentication succeeds, the voter authorizer service will authorize the
use of public key Yi for the voter Vi by interacting with the digital ballot box
D in WriteOnBoard(A,mvs, cvs, pvs) (protocol 2) to write a voter session item
bvs as the next item on the bulletin board, according to the rules specified in
appendix A, where mvs = ”voter session”, the parent pvs is the address of the
latest configuration item and the content cvs consists of the voter identifier, the
public key Yi, and a digest of the proof PKauth.

The voter authorizer returns to the voter with the voter session item bvs as
received from the digital ballot box. The voting application validates the item
according to protocol 2. Additionally, it checks that the item is consistent
according to the configuration ancestry αcnf , i.e., AncestryVer({bvs}, hcnf) (algo-
rithm 1), where hcnf is the address of the last item in αcnf . From this point on,
the voter can interact directly with the digital ballot box as the identity Vi.

The voter authorizer service stores a link between the voter identity Vi and
the proof of credentials PKauth for the administration auditing process in the
post-election phase as described in section 5.2.

25

Voter Vi Voter Authorizer A
internal knowledge: YA, YD,

{c1, ..., cnc}, αcnf

internal knowledge: xA, V,
{Yauth;1, ..., Yauth;nv}, αcnf

(xauth;i,j , Yauth;i,j)← Pass2Key(cj), with j ∈ {1, ..., nc}
xauth;i ←

∑nc
j=1 xauth;i,j (mod q)

Yauth;i ←
∑nc
j=1 Yauth;i,j = [xauth;i]G

PKauth ← DLProve(xauth;i, {G}), (xi, Yi)← KeyGen()

Yauth;i, PKauth, Yi

verify that Yauth;i ∈ {Yauth;1, ..., Yauth;nv} and
DLVer(PKauth, {G}, {Yauth;i}) then:

mvs ← ”voter session”, cvs ← (Vi, Yi,H(PKauth))
pvs ← the address of the latest item from αcnf

A and D perform protocol 2 to write bvs as the next

item of the bulletin board

(bvs, ρvs)← WriteOnBoard(A,mvs, cvs, pvs)

internally store tuple (Vi, PKauth) for auditing
bvs

hcnf ← the address of the latest item in αcnf

cvs ← the content of bvs

verify AncestryVer({bvs}, hcnf), ItemVer(bvs, YA)
and that cvs = (Vi, Yi,H(PKauth))

Figure 4: Credential-based voter authentication protocol

4.7.3 Mapping vote options on the Elliptic Curve

An expressed vote (i.e., a vote in plain text) must be able to be converted deter-
ministically into elliptic curve points to be used in our cryptographic protocols.
Additionally, a series of points from the elliptic curve must be able to be con-
verted back into a plain-text vote if said points have been constructed from a
plain-text vote. Depending on the election type (referendum, simple election,
multiple choice election, STV election), the plain text vote can be constructed
in different ways, such as a simple string, an array of integers, or even a complex
data structure. Regardless of the election type and marking rules, we represent
a plain-text vote as a byte array ~b ∈ B∗.

Next, ~b is converted into elliptic curve points ~V ← EncodeVote(~b) (algorithm 4),
which can be used in the encryption mechanism described in section 4.7.4. Thus,
the set of points ~V represents the voter’s choices in cryptographic form.

Recovering a byte array from ~V is done by ~b ← DecodeVote(~V) (algorithm 5).

26

Then, ~b can be interpreted as a plain-text vote, depending on encoding rules.

Algorithm 4: EncodeVote(~b)

Data: The plain-text vote ~b = {b1, ..., bn} ∈ Bn
m← ByteLengthOf(p)− 1 // algorithm 11

`← dn/me
for i← 0 to `− 1 by 1 do

Vi+1 ← Bytes2Point({bi∗m+1, ..., bi∗m+m}) // algorithm 12

end
~V ← {V1, ..., V`}
return ~V // ~V ∈ P∗

Algorithm 5: DecodeVote(~V)

Data: The list of points ~V = {V1, ..., V`} ∈ P`
~b← {}
for i← 1 to ` by 1 do

~b← ~b ∪ Point2Bytes(Vi) // algorithm 13

end

return ~b // ~b ∈ B∗

4.7.4 Vote cryptogram generation process

During the vote cryptogram generation process, the voting application collabo-
rates with the digital ballot box D for generating cryptograms ~e that represent
the encryption of the vote ~V . This process results in neither the voter Vi nor
the digital ballot box D having the whole randomizer value r used in the genera-
tion process of each cryptogram e (as explained in appendix B.4.1 a cryptogram
e = Enc(Yenc, V ; r)). That is achieved by the voter and the digital ballot box
building up the randomizer, while neither of them knowing its entire value. It is
important that neither the voter nor the digital ballot box know the value of r so
they cannot produce cryptographic evidence of the way they voted. The entire
process consists of each party generating its own encryption randomizer, then
committing to it (figure 5), and finally, combining them to form the encrypted
ballot and submitting it (figure 6).

The generation process begins with the voting application generating its en-
cryption randomizers ~rv = {rv;1, ..., rv;`} ∈R Z`q and computing a commitment
to them cv ← Com(~rv, sv) (algorithm 31), where sv ∈R Zq. The voting ap-
plication subsequently interacts with the digital ballot box in the protocol 2
WriteOnBoard(Vi,mvec, cvec, pvec) to append the vote encryption commitment
item bvec on the board, where mvec = ”voter encryption commitment”, the con-
tent cvec consists of the commitment cv, and the parent pvec is the address of

27

the voter session item, received in section 4.7.1. Note that before appending the
new item, the board consists of {b1, ..., bk−1}, thus bvec becoming the kth item.

28

Voter Vi Digital Ballot Box D

internal knowledge: xi, YD, `,
αvs = αcnf ∪ {bvs}

internal knowledge: xD, Yenc, `,
b = {b1, ..., bk−1}

~rv = {rv;1, ..., rv;`} ∈R Z`q, sv ∈R Zq
cvec ← Com(~rv, sv), pvec ← the address of bvs

mvec ← ”voter encryption commitment”

Vi and D perform protocol 2 to write bvec as the kth item of b
(bvec, ρvec)← WriteOnBoard(Vi,mvec, cvec, pvec), therefore bvec ∈ b

~rd = {rd;1, ..., rd;`} ∈R Z`q, sd ∈R Zq
csec ← Com(~rd, sd), psec ← the address of bvec

msec ← ”server encryption commitment”

perform protocol 2 to write bsec as the (k + 1)th item of b

(bsec, ρsec)← WriteOnBoard(D,msec, csec, psec),

therefore bsec ∈ b

ed;i ← Enc(Yenc,O; rd;i), with i ∈ {1, ..., `}
~ed ← {ed;1, ..., ed;`}

(bvec, ρvec), (bsec, ρsec), ~ed

hvs ← the address of bvs

verify AncestryVer({bvec, bsec}, hvs)
and ItemVer(bsec, YD)

Figure 5: Encryption commitments submission protocol

After publishing the voter encryption commitment item on the bulletin board,
the digital ballot box immediately generates its own set of encryption randomiz-
ers ~rd = {rd;1, ..., rd;`} ∈R Z`q and commitment cd ← Com(~rd, sd) (algorithm 31),
where sd ∈R Zq. It then self-writes a server encryption commitment item bsec on
the board by running protocol 2 WriteOnBoard(D,msec, csec, psec), where msec =
”server encryption commitment”, the content csec consists of its commitment
cd, and psec is the address of the voter encryption commitment item bvec.

Next, the digital ballot box returns to the voting application both items bvec

and bsec together with their respective receipts, according to the protocol 2 and
the empty cryptograms ~ed = {ed;1, ..., ed;`}, with each ed;i being the encryption
of the neutral point O using the encryption randomizers rd;i. The voting appli-
cation performs the validation of the board items bvec and bsec according to the
protocol 2 and continues, if successful.

29

Voter Vi Digital Ballot Box D

internal knowledge: xi, YD, Yenc, `,
αsec = αcnf ∪ {bvec, bsec}, ~V = {V1, ..., V`},
~rv = {rv;1, ..., rv;`}, ~ed = {ed;1, ..., ed;`}

internal knowledge: xD, Yenc, `,
b′ = {b1, ..., bk′−1},
~rd = {rd;1, ..., rd;`}

ev;i ← Enc(Yenc, Vi; rv;i), with i ∈ {1, ..., `}
ei ← HomAdd(ed;i, ev;i)
~e← {e1, ..., e`}
PKi ← DLProve(rv;i, {G})
cbc ← ~e, pbc ← address of bsec

mbc ← ”ballot cryptograms”

{PK1, ..., PK`},
~e = {e1, ..., e`}, with ei = (Ri, Ci)

verify that
DLVer(PKi, {G}; {Ri − [rd;i]G}), with i ∈ {1, ..., `}

Vi and D perform protocol 2 to write bbc as the k′th item of b
(bbc, ρbc)← WriteOnBoard(Vi,mbc, cbc, pbc), therefore bbc ∈ b

cvts ← ∅, pvts ← the address of bbc

mvts ← ”verification track start”

perform protocol 2 to write bvts as the first item on the

hidden track introduced by the ballot cryptograms item bbbc

(bvts, ρvts)← WriteOnBoard(D,mvts, cvts, pvts),

therefore bbbc = {bvts}

(bbc, ρbc), (bvts, ρvts)

hsec ← the address of bsec,
hbc ← the address of bbc

verify AncestryVer({bvts, bbc}, hsec),
ItemVer(bvts, YD) and HistoryVer({bvts}, hbc)

Figure 6: Encrypted ballot submission protocol

After both parties have published their encryption commitment items, as pre-
sented in figure 6, the voting application encrypts the voter’s encoded vote ~V
(as constructed in section 4.7.3) by computing ev;i ← Enc(Yenc, Vi, rv;i) (al-
gorithm 17), with i ∈ {1, ..., `}. This is further combined with the empty
cryptograms received from the digital ballot box to produce the voter’s fi-
nal ballot cryptograms ~e = {e1, ..., e`}, where ei ← HomAdd(ev;i, ed;i) (algo-
rithm 19). The voting application also computes as proof of correct encryption
PKi ← DLProve(rv;i, {G}) (algorithm 14) to confirm that the empty cryp-
tograms ~ed have been used in the creation of the final ballot cryptograms ~e.

30

The voting application interacts with the digital ballot box in the protocol
WriteOnBoard(Vi,mbc, cbc, pbc) (protocol 2) to append the ballot cryptogram
item bbc on the board, where mbc = ”ballot cryptograms”, the content cbc

consists of the cryptograms ~e, and the parent pbc is the address of the server
encryption commitment item bsec. Note that this time the bulletin board con-
sists of items b′ = {b1, ..., bk′−1}, where k′ ≥ k as more items could have been
appended by other voters in between the protocols from figure 5 and figure 6,
resulting in bbc becoming the k′

th
item.

Additionally, the voting application submits the proofs {PK1, ..., PK`} to the
digital ballot box, which performs protocol 2 if DLVer(PKi, {G}, {Ri− [rd;i]G})
(algorithm 15) succeeds, for each i ∈ {1, ..., `}, where the content of the item
cbc consists of ~e = {e1, ..., e`} and each ei = (Ri, Ci).

After publishing the ballot cryptograms item on the bulletin board, the digital
ballot box immediately self-writes a verification track start item bvts on the hid-
den track of the bulletin board bbbc by running WriteOnBoard(D,mvts, cvts, pvts)
(protocol 2), where mvts = ”verification track start”, the content csec is empty
and the parent pvts is the address of the ballot cryptogram item bbc. Note that,
at this point, the hidden track contains bbbc = {bvts}.

Next, the digital ballot box returns both items bbc and bvts to the voting appli-
cation together with their respective receipts, according to the protocol 2. The
voting application validates the two board items according to the protocol 2. In
addition, it checks that the verification track start item is the only item on the
hidden track by HistoryVer({bvts}, hbc) (algorithm 2), where hbc is the address
of the ballot cryptograms item.

Throughout the entire process, if an actor fails to validate any of the verification
steps, the actor stops and aborts the protocol.

Note that each cryptogram ei is actually equivalent to Enc(Yenc, Vi; ri), where
ri = rv;i + rd;i. Both the voter and the digital ballot box know part of the ran-
domizer value, rv;i and rd;i respectively, but neither of them knows the combined
value ri, for any i ∈ {1, ..., `}.

4.7.5 Vote confirmation receipt

After encrypting a ballot, the voter Vi can choose whether to test or cast it.
After deciding to cast the ballot, the voter receives a receipt from the digital
ballot box that confirms that the ballot has been registered as cast on the public
bulletin board.

The voter has to follow the protocol from figure 7 where the voting application
interacts with the digital ballot box in WriteOnBoard(Vi,mcr, ccr, pcr) (protocol
2) to append the cast request item bcr on the board, where mcr = ”cast re-
quest”, the content ccr is empty and the parent pcr is the address of the ballot
cryptograms item bbc.

31

After publishing the cast request item on the bulletin board, the digital ballot
box return to the voting app with the item bcr and its receipt ρcr. The voting app
checks the item according to validations of protocol 2, and if valid, the voting
application presents the receipt ρcr together with σcr and hcr to the voter.

The voter stores the tuple as the vote confirmation receipt (i.e., proof of the
ballot being cast on the bulletin board). The voter can use it at any time to check
that the vote is registered on the bulletin board as described in section 5.1.2.

Note that if a voter Vi has a valid vote confirmation receipt (ρcr, σcr, hcr), which
does not correspond with the current state of the bulletin board, i.e., hcr is not
an address on the bulletin board b, that reveals that the integrity of the bulletin
board has been broken and should be reported to the election officials.

Voter Vi Digital Ballot Box D

internal knowledge: xi, YD, Yaff ,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc}

internal knowledge: xD,
b = {b1, ..., bk−1}, where αbc ⊂ b

ccr ← ∅
pcr ← the address of bbc

mcr ← ”cast request”

Vi and D perform protocol 2 to write bcr as the kth item of b
(bcr, ρcr)← WriteOnBoard(Vi,mcr, ccr, pcr), therefore bcr ∈ b

σcr ← the voter’s signtaure on bcr

hcr ← the address of bcr

store (ρcr, σcr, hcr) as the vote receipt

Figure 7: Ballot casting protocol

4.8 Ballot checking

After encrypting a ballot, the voter Vi can choose whether to test or cast it. To
perform the testing process of an encrypted ballot, the voter needs to interact
with the external verifier that will perform all the testing operations on behalf
of the voter, according to the data published on the bulletin board. At the
end of the testing process, the voter will be presented with the vote choices
encoded in the encrypted ballot. The encrypted ballot being tested gets spoiled
when doing the testing procedure. Therefore, the voter needs to redo the vote
cryptogram generation process from section 4.7.4 to get a new encrypted ballot,
which the voter has to choose again whether to test or to cast. This process can
be repeated until the voter trusts the legitimacy of the next encrypted ballot
generated by the voting application. The protocol is inspired by [3].

32

The first part of the protocol (figure 8) establishes a trusted connection between
the voting application and the external verifier over the bulletin board. The
voter inputs into the external verifier the address of the verification track start
item bvts, which queries the digital ballot box for the item at that address and
its ancestry. The digital ballot box returns αvts = αcnf∪{bvs, bvec, bsec, bbc, bvts},
which consists of all the configuration items αcnf (e.g., the genesis item, election
configuration items, contest configuration items, etc.) plus all the voting items
that are relevant to voter Vi. Notice that all configuration and voting items
are on the public bulletin board (i.e., αcnf , bvs, bvec, bsec, bbc ∈ b), except the
verification track start item bvts which exists on the hidden track bbbc that has
been spawned by the ballot cryptograms item bbc.

The external verifier validates the list by running AncestryVer(αvts,∅) (algo-
rithm 1), therefore checking that αvts has a consistent ancestry all the way
through the genesis item, which has no parent. Thus, the parent of the entire
ancestry is null or ∅. The external verifier also checks the integrity of every item
by ItemVer(bj , YW) (algorithm 3), where bj ∈ αvts and YW is the public key of
the respective writer, according to the rules from appendix A. Note that the set
of writers, as presented in section 2.2, consists of the voter Vi, the digital ballot
box D, the election administrator E and the voter authorizer A. The external
verifier can extract the voter’s public key Yi from the voter session item bvs and
the other public keys YD, YE and YA from the configuration items. If valid, the
external verifier notifies the voter that the ballot was successfully found.

Then, the voter chooses to test the encryption of the ballot, so the voting ap-
plication interacts with the digital ballot box in WriteOnBoard(Vi,msr, csr, psr)
(protocol 2) to append the spoil request item bsr on the board, where msr =
”spoil request”, the content csr is empty and the parent psr is the address of the
ballot cryptograms item bbc.

After publishing the spoil request item bsr, the digital ballot box sends the new
item also to the external verifier, which verifies its integrity ItemVer(bsr, Yi) (al-
gorithm 3) and that it is consistent with the ancestry AncestryVer({bsr}, hbc) (al-
gorithm 1), where hbc is the address of the ballot cryptograms item bbc. If valid,
the external verifier generates its key pair (xX , YX)← KeyGen() (algorithm 16)
and interacts with the digital ballot box in WriteOnBoard(X ,mv, cv, pv) (proto-
col 2) to write a verifier item bv on the hidden track, where mv = ”verifier”, the
content cv contains the external verifier’s public key YX and the parent pv is the
address of the spoil request item bsr. Note that the verifier item bv is appended
on the hidden track introduced by the ballot cryptograms item bbc. Therefore,
at the end of this step, the hidden track consists of bbbc = {bvts, bv}. From this
point on, the external verifier represents identity X on the hidden track bbbc .

The protocol continues with figure 9 where the external verifier returns to the
voter with the address of the verifier item hv. The voter also receives the
verifier item bv from the digital ballot box. The voter checks the integrity of the
item ItemVer(bv, YX) (algorithm 3) and that it is consistent with the ancestry
AncestryVer({bv}, hvts) (algorithm 1), where YX is extracted from the content

33

of the verifier item and hvts is the address of the verification track start item.
Then the voter checks that the address received from the external verifier is
consistent with the verifier item received from the digital ballot box. If valid,
the voter managed to establish a trusted connection with the external verifier
over the bulletin board. Therefore the protocol can continue.

Next, both the voter and the digital ballot box collaborate to securely deliver
their encryption randomizers ~rv and ~rd respectively to the external verifier, as
generated in section 4.7.4. The external verifier will use them to decrypt the
voter’s ballot cryptograms and present the vote choices for assessment.

This is achieved by the voting application encrypting (using standard sym-
metric key encryption) the randomizers and the commitment opening dv ←
SymEnc(kv, ~rv||sv) (algorithm 22), where kv is a derived symmetric key based
on Diffie-Hellman key exchange mechanism between the voter and the external
verifier, i.e., kv ← DerSymKey(xi, YX) (algorithm 24). Then, the voter interacts
with the digital ballot box to write the voter commitment opening item bvco on
the hidden track WriteOnBoard(Vi,mvco, cvco, pvco) (protocol 2), where mvco =
”voter commitment opening”, content cvco consists of the encryption dv and the
parent pv is the address of the verifier item bv.

After publishing the voter commitment opening item, the digital ballot box
immediately computes its own encryption of the randomizers and commitment
opening dd using the same strategy as the voter in the previous paragraph.
Then, it self writes a server commitment opening item bsco on the board by
running WriteOnBoard(D,msco, csco, psco) (protocol 2), where msco = ”server
commitment opening”, the content csec consists of the encryption dd and the
parent psco is the address of the voter commitment opening item bvco.

Then (figure 10), the external verifier is notified about both commitment open-
ing items, which verifies their integrity and that they are consistent with the
previous ancestry. If valid, it decrypts (using standard symmetric key decryp-
tion) both commitment openings of the voter (~rv, sv) ← SymDec(kv, dv) (al-
gorithm 23) and of the digital ballot box (~rd, sd) ← SymDec(kd, dd), where
the encryptions dv and dd are extracted from the content of the voter and the
server commitment opening items respectively. The symmetric keys kv and kd

are computed based on the Diffie-Hellman key exchange mechanism between
the external verifier and the voter or the digital ballot box, respectively.

Next, the external verifier checks whether the commitment openings are consis-
tent with the commitments that were published in section 4.7.4, i.e., verification
of the voter commitment ComVer(cv, ~rv, sv) (algorithm 32) and of the server
commitment ComVer(cd, ~rd, sd), where commitments cv and cd are extracted
from the voter and server encryption commitment items respectively. If com-
mitments are valid, the external verifier proceeds to unpack the cryptograms ~e,
which are extracted from the ballot cryptograms items bbc. If any validations
fail, the external verifier informs the voter about the failure.

34

The external verifier unpacks vote ~V ′ by decrypting a variant of each cryptogram
ei = (Ri, Ci), with ei ∈ ~e, where point Ri is substituted by the encryption key
Yenc, such that it can be decrypted by the randomizer rv;i + rd;i instead of the
decryption key. Note that the encryption key Yenc can be extracted from the
threshold configuration item, which is part of αcnf . Formally, ~V ′ = {V ′1 , ..., V ′` },
with V ′i ← Dec(rv;i + rd;i, e

′
i) (algorithm 18), where e′i ← (Yenc, Ci).

Finally, the external verifier presents the vote ~V ′ to the voter, which can compare
to the original vote choice ~V , as computed in section 4.7.3. Note that ~V ′ can
even be decoded into a human-readable presentation of the vote choices by
decoding it to bytes DecodeVote(~V ′) (algorithm 5) and then into a plain-text
vote according to the configuration from αcnf . If the vote matches, then the
voter is assured that the voting application behaved correctly (i.e., encrypted
a genuine vote). Otherwise, the voter has evidence that the voting application
has misbehaved during the process and should act accordingly.

35

Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: xi, YD,
αvts = αcnf ∪ {bvs, bvec, bsec, bbc, bvts}

no internal knowledge internal knowledge: xD, b = {b1, ..., bk−1},
bbbc = {bvts}, where αcnf , {bvs, bvec, bsec, bbc} ⊂ b

address of bvts
address of bvts

αvts = αcnf ∪ {bvs, bvec, bsec, bbc, bvts}

Yi = the content of bvs, {YD, YE , YA} = the contents of αcnf

verify AncestryVer(αvts,∅) and ItemVer(bj , YW) for each bj ∈ αvts,
where W ∈ {D, E ,A,Vi} according to rules form appendix A

”ballot found”

msr ← ”spoil request”, csr ← ∅, psr ← address of bbc

Vi and D perform protocol 2 to write bsr as the kth item of b
(bsr, ρsr)← WriteOnBoard(Vi,msr, csr, psr), therefore bsr ∈ b

bsr

hbc ← the address of bbc

verify AncestryVer({bsr}, hbc) and ItemVer(bsr, Yi) then:

(xX , YX)← KeyGen(),
mv ← ”verifier”, cv ← YX , pv ← address of bsr

X and D perform protocol 2 to write bv as the second item of the hidden track bbbc

(bv, ρv)← WriteOnBoard(X ,mv, cv, pv), threfore bbbc = {bvts, bv}

Figure 8: External verifier setup protocol

36

Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: xi, YD, ~rv, sv,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc},

αvts = αbc ∪ {bvts}, αsr = αbc ∪ {bsr}

internal knowledge: xX ,
αbc = αcnf ∪ {bvs, bvec, bsec, bbc},

αv = αbc ∪ {bvts, bv}, αsr = αbc ∪ {bsr}

internal knowledge: xD, YX ,
~rd, sd, b, bbbc = {bvts, bv}

hv = address of bv
bv

YX = the content of bv, hvts = the address of bvts

verify AncestryVer({bv}, hvts), ItemVer(bv, YX) and address of bv = hv then:

kv ← DerSymKey(xi, YX), dv ← SymEnc(kv, ~rv||sv)
cvco ← dv, pvco ← address of bv
mvco ← ”voter commitment opening”

Vi and D perform protocol 2 to write bvco as third item of the hiddne track bbbc

(bvco, ρvco)← WriteOnBoard(Vi,mvco, cvco, pvco), therefore bbbc = {bvts, bv, bvco}

kd ← DerSymKey(xD, YX), dd ← SymEnc(kd, ~rd||sd)
csco ← dd, psco ← address of bvco

msco ← ”server commitment opening”

perform protocol 2 to write bsco as the forth item on the

hidden track bbbc , therefore bbbc = {bvts, bv, bvco, bsco}
(bsco, ρsco)← WriteOnBoard(D,msco, csco, psco)

bvco, bsco

verify AncestryVer({bvco, bsco}, hv) and ItemVer(bsco, YD)

Figure 9: Commitment opening submission protocol

37

Voter Vi External Verifier X Digital Ballot Box D

internal knowledge: ~V internal knowledge: xX , Yi, YD,
αv = αcnf ∪ {bvs, bvec, bsec, bbc, bvts, bv}

internal knowledge: xD,
b, bbbc = {bvts, bv, bvco, bsco}

bvco, bsco

verify AncestryVer({bvco, bsco}, hv),
ItemVer(bvco, Yi) and ItemVer(bsco, YD) then:

dv = the content of bvco, dd = the content of bsco

cv = the content of bvec, cd = the content of bsec

~e = {e1, ..., e`} = the content of bbc, with ei = (Ri, Ci)
Yenc = the contents of αcnf

kv ← DerSymKey(xX , Yi), (~rv, sv)← SymDec(kv, dv)
kd ← DerSymKey(xX , YD), (~rd, sd)← SymDec(kd, dd)

verify that ComVer(cv, ~rv, sv) and ComVer(cd, ~rd, sd) then:

~V ′ = {V ′1 , ..., V ′` }, with V ′i ← Dec(rv;i + rd;i, e
′
i), where e′i ← (Yenc, Ci)

~V ′

verify that ~V = ~V ′

Figure 10: Unpacking the encrypted ballot protocol

38

4.9 Ballot extraction

After the voting phase has finished, the election proceeds to the last step, which
will generate the election result. Now, the digital ballot box does not accept
any new vote cryptograms. The bulletin board remains publicly available for
auditing purposes.

The process of computing a result consists of the following:

• an election official uses the election administrator service to request a
result to be computed by interacting with the digital ballot box in protocol
2 WriteOnBoard(E ,mei, cei, pei) to publish an extraction intent item bei on
the bulletin board, according to the rules from appendix A,

• the digital ballot box identifies the ballots to be included in the tally,
according to section 4.9.1,

• a subset of all trustees Ti, with i ∈ τ and τ ⊂ {1, ..., nt}, collaborate in
the mixing process to anonymize the encrypted ballots, as described in
section 4.9.2,

• the same subset of trustees collaborate in the decryption process (sec-
tion 4.9.3) of the anonymized votes,

• finally, an election official publishes the result confirmation item on the
bulletin board as described in section 4.9.4.

This process of computing a result is executed separately for each voting round
configured in the pre-election phase (described in section 4.3.2).

4.9.1 Extraction procedure

Triggered by the extraction intent item bei being published, the digital ballot box
D bundles the list of encrypted ballots to be extracted. They are represented
by the cryptograms that exist in the content of the ballot cryptograms items
that conform to the following rules:

• it is the latest ballot cryptograms items submitted by a particular voter

• it is followed by a cast request item

All other ballots are considered overwritten or rejected and, therefore, discarded.

We denote the extracted ballots as the matrix of cryptograms ~~e0 = {~e1, ..., ~ene
}.

~~e0 is called the initial mixed board and it is used as input to the mixing phase.

Next, the digital ballot box D self-publishes an extraction data item bed on the
bulletin board by running WriteOnBoard(D,med, ced, ped) (protocol 2), where

med = ”extraction data”, the content ced consists of the initial mixed board ~~e0

and the parent ped is the address of the extraction intent item bei.

39

The extraction procedure is publicly auditable as both the list of vote cryp-
tograms and the initial mixed board are publicly available.

4.9.2 Mixing Phase

During the mixing phase, the board of cryptograms will change its appearance
several times, being shuffled in an indistinguishable way. Each trustee, Ti with
i ∈ τ , applies its mixing algorithm in sequential order (the output from Ti−1 is
the input to Ti). The first trustee applies its algorithm on the initial mixed board,
and the output of the last trustee is used as the final mixed board. The election
administrator facilitates the mixing phase and decides the order of trustees.

Formally, trustee Ti computes the mixed board of cryptograms by applying
~~ei ← Shuffle(Yenc, ~~ei−1, ~~ri, ψi) (algorithm 33), where Yenc is the encryption key,
~~ri ∈R Zne×`

q and ψi is a permutation of ne elements. Next, as described in
appendix B.10, trustee Ti computes a proof of correct mixing (PMi, ASi) ←
MixProve(ψi, Yenc, ~~ri, ~~ei−1, ~~ei) (algorithm 36). Then, trustee Ti submits to the

election administrator the mixed board ~~ei and the mixing proof (PMi, ASi).

For a mixing step to be accepted, the validity of the mixing proof has to be
checked by running MixVer(PMi, ASi, Yenc, ~~ei−1, ~~ei) (algorithm 37). If the proof
fails, either that trustee recomputes the mixing step or is removed, and the
process continues without that trustee.

Obviously, each trustee Ti knows the shuffling coefficients (~~ri and ψi) of its own

mixing algorithm, and it can link the votes on the previous mixed board ~~ei−1

with the ones on the mixing board at ith step ~~ei. However, Ti does not know the
shuffling coefficients of the other trustees, so it cannot create a complete link
between the votes on the final mixed board and the ones on the initial mixed
board, unless all trustees are corrupt and collude against the election.

Assuming at least one honest trustee will not reveal its shuffling coefficients,
the final mixed board of cryptograms represents the anonymized version of the
initial mixed board of cryptograms. The final mixed board of cryptograms is
used in the decryption phase to compute the election results.

4.9.3 Decryption Phase

Because the link between a vote cryptogram and its voter has been broken
during the mixing phase, it is safe to decrypt all the cryptograms from the final
mixed board as it does not violate the secrecy of the election. Furthermore,
decrypting this list of cryptograms would lead to accurate and correct results
as it contains the exact same votes as the initial mixed board, a fact proven by
the mixing proofs. In this section, the final mixed board is referred to as ~~e.

40

During the decryption phase, trustees must collaborate again to perform the
threshold decryption protocol as presented in [4]. Each trustee, Ti with i ∈ τ ,

gets the final mixed board of cryptograms ~~e = {e1,1, ..., ene,`} then computes
partial decryptions of each cryptogram together with a proof of correct decryp-

tion by applying (
~~Si, PKi) ← PartiallyDecryptAndProve(~~e, sxi) (algorithm 6).

Recall that trustee Ti owns its share of the decryption key sxi as it has been
computed during the threshold ceremony (section 4.6).

Then, trustee Ti submits the partial decryption
~~Si and the proof PKi to the

ceremony coordinator, which accepts the partial decryption if the proof validates

according to PartialDecryptionVer(~~e,
~~Si, PKi, sYi) (algorithm 7). Note that sYi

is the public share of the trustee Ti, which is computable based on the public
polynomial coefficients generated during the threshold ceremony (section 4.6):

sYi ←
n∑
j=1

(Yj +

t−1∑
k=1

[ik]Pj,k).

Upon receiving partial decryptions
~~Si from all trustees Ti with i ∈ τ , the

ceremony orchestrator aggregates all partial decryptions for each cryptogram

in ~~e to finalize the decryption and extract the votes
~~V = {V1,1, ..., Vne,`} ←

FinalizeDecryption(~~e, {~~Si|i ∈ τ}) (algorithm 8). The aggregation is done by
calculating the Lagrange Interpolation Polynomial where each term is a par-
tial decryption Si received from a trustee Ti that needs to be multiplied by
the Lagrange Interpolation Polynomial coefficient which is λ(i) =

∏
j∈τ,j 6=i

−j
i−j

(mod q). Note that the calculation is possible only when t ≤ |τ | ≤ nt, where t
is the threshold value set during the threshold ceremony (section 4.6) and nt is
the total number of trustees.

After being decrypted,
~~V represents the raw result of the election, i.e., the full

list of votes as elliptic curve points.

41

Algorithm 6: PartiallyDecryptAndProve(~~e, sx)

Data: The matrix of cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`, with
ei,j = (Ri,j , Ci,j)

The share of decryption key sx ∈ Zq
for i← 1 to n by 1 do

for j ← 1 to ` by 1 do
Si,j ← [sx]Ri,j

end

end
~~S ← {S1,1, ..., Sn,`}
~R← {G,R1,1, ..., Rn,`}
PK ← DLProve(sx, ~R) // algorithm 14

return (
~~S, PK) //

~~S ∈ Pn×`, PK ∈ P× Zq × Zq

Algorithm 7: PartialDecryptionVer(~~e,
~~S, PK, sY)

Data: The matrix of cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`, with
ei,j = (Ri,j , Ci,j)

The partial decryptions
~~S = {S1,1, ..., Sn,`} ∈ Pn×`

The proof of correct decryption PK ∈ P× Zq × Zq
The public share of decryption key sY ∈ P

~R← {G,R1,1, ..., Rn,`}
~S ← {sY, S1,1, ..., Sn,`}
b← DLVer(PK, ~R, ~S) // algorithm 15

return b // b ∈ B

Algorithm 8: FinalizeDecryption(~~e,
~~~S)

Data: The matrix of cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`, with
ei,j = (Ri,j , Ci,j)

The partial decryptions
~~~S = {~~Sk|k ∈ τ}, with each

~~Sk = {Sk,1,1, ..., Sk,n,`} ∈ Pn×`
for i← 1 to n by 1 do

for j ← 1 to ` by 1 do
Vi,j ← Ci,j −

∑
k∈τ [λ(k)]Sk,i,j

end

end
~~V ← {V1,1, ..., Vn,`}

return
~~V //

~~V ∈ Pn×`

42

4.9.4 Result Interpretation

After ballots have been decrypted, the raw result can be interpreted and pre-
sented in a more readable way. The result interpretation depends on the election
type (simple election, multiple choice, STV, etc.). For simplicity, we will con-
sider the simple election case, where voters had to choose one option from a
predefined set of candidates, i.e., a vote is a plain text representing a candi-
date’s name.

First, all votes ~Vi ∈
~~V have to be decoded into bytes ~bi ← DecodeVote(~Vi) (al-

gorithm 5), then interpreted as text and finally mapped to one of the candidate

names. If any of these steps fail, the vote ~Vi is considered invalid. Tallying the
votes that each candidate received is considered trivial and out of scope for this
document.

Finally, all data that have been computed during the mixing and decryption
phases are collected by the election administrator E and published on the bul-
letin board as the extraction confirmation item bec by performing protocol 2
WriteOnBoard(E ,mec, cec, pec), where mec = ”extraction confirmation”, the par-
ent pec is the address of the extraction data item bed and the content cec includes:

• a set of the following data from each trustee Ti that participated in the
result ceremony, with i ∈ τ :

– the mixed boards of cryptograms ~~ei

– the mixing proofs (PMi, ASi)

– the partial decryptions
~~Si

– the proofs of correct decryption PKi

• the list of decrypted votes
~~V

• the summarized (tallied) election result

43

5 Auditing

This section describes the entire auditing process of an election. It presents
all the verification mechanisms, who conducts them, and what cryptographic
algorithms they involve. These verification mechanisms can be split into three
categories:

• voter-specific verification mechanisms that can be performed individually
by voters and target their specific vote (section 5.1),

• internal auditing processes performed by election officials that target the
behavior of the election system (section 5.2),

• publicly available audit processes that verify all data on the public bulletin
board (section 5.3).

5.1 Individual voter verifications

During the voting process, voters can verify two aspects of their vote: that it
is cast as intended and registered as cast. These verification steps help voters
gain confidence that the election system behaves correctly, at least at processing
their vote.

5.1.1 Vote is cast as intended

At the end of the vote cryptogram generation process (section 4.7.4), the voter
is presented with a set of cryptograms ~e = {e1, ..., e`}, with each ei = (Ri, Ci),
where ` is the number of cryptograms a ballot is made out of. The set ~e is
the encryption of vote ~V with the encryption key Yenc and randomizers ~r =
{r1, ..., r`}, where each ri = rv;i+rd;i. The set of randomizers ~rv = {rv;1, ..., rv;`}
is known by the voting application and ~rd = {rd;1, ..., rd;`} is known only by the
digital ballot box. Hence, it is the voting application and the digital ballot box
that collectively perform the encryption of the voter’s vote.

Because the vote is encrypted, the voter cannot tell whether the cryptograms ~e
actually represent an encryption of vote ~V or not. Therefore, to get convinced
that the voting application and the digital ballot box behaved correctly dur-
ing the vote cryptogram generation process, the voter can perform the ballot
checking process, as presented in section 4.8 to verify the activity of the voting
application and digital ballot box.

If the voter chooses to perform the ballot checking process, a second device is
used to perform all the cryptographic validations on behalf of the voter. Both
randomizer sets ~rv and ~rd are sent securely from the voting application and
the digital ballot box, respectively, to the external verifier application that runs
on the secondary device. The verification application uses them to unpack the

44

encrypted ballot and present the vote choices to the voter. The fully detailed
process is shown in section 4.8.

If the vote corresponds to the voter’s intended choices, then the voter gains
confidence that the voting application behaved correctly.

If the vote does not correspond to the voter’s intention, the auditing process
provides evidence that the encrypted ballot has not been cast as intended. Note
that in this case, there is no distinction between the election system maliciously
changing the voter’s vote behind the scenes or the voter accidentally mischoosing
the vote options.

After the voter has successfully performed the ballot checking process, the ballot
gets invalidated because each of the randomizer values rv;i + rd;i has been ex-
posed, for each i ∈ {1, ..., `}. Now, the voter has to regenerate vote cryptograms
(as presented in section 4.7.4) and choose again whether to check or submit. Vot-
ers should perform the checking process again until they have enough confidence
in the system to cast their vote as intended.

5.1.2 Vote is registered as cast

When the voter submits and casts an encrypted ballot (by submitting a cast
request item as described in section 4.7.5), a vote confirmation receipt (ρ, σ, h)
is returned as a response from the digital ballot box. The receipt contains a
digital signature of the digital ballot box, which certifies that the voter’s ballot
has been registered on the public bulletin board. The receipt can be validated
by checking SigVer(YD, ρ;σ||h) (algorithm 29), where YD is the public key of the
digital ballot box, σ is the voter’s signature on the cast request item, and h is
the address of the item on the bulletin board.

Anytime after casting a ballot, the voter can check the receipt against the bul-
letin board, which should find the appropriate ballot submission. Thus, the
voter gains confidence that the vote is registered as cast.

If a voter has a valid receipt (i.e., which validates SigVer(YD, ρ;σ||h) algo-
rithm 29) that does not correspond to any item from the public bulletin board,
then the tuple (ρ, σ, h) represents evidence that the integrity of the bulletin
board has been compromised. The argument is that a previously accepted item
has been removed or tampered with on the bulletin board.

5.2 Administration auditing process

This section describes the auditing steps that are available only to election
officials because they are based on data that is not publicly available. These au-
diting processes verify the activity of specific components of the election system.
The administration auditing processes give confidence to the election officials
that the election is run correctly. Therefore, the result is trustworthy.

45

5.2.1 Eligibility verifiability

This auditing process verifies that only eligible voters have submitted ballots
to the bulletin board, i.e., verifying that all voter session items have been au-
thorized by the voter authorizer based on successful voter authentication. This
process must be done before computing a result, so election officials validate the
eligibility of the extracted ballots.

The auditing starts by providing the public key of the voter authorizer YA,
all eligible voter identities V = {V1, ...,Vnv

}, and the list of voter session
items from the bulletin board {bvs;1, ..., bvs;nvs}, where nvs is the total num-
ber of voter session items. Recall that items have the following structure
bvs;i = (mi, ci,A, σi, ti, pi, h′i, hi), with i ∈ {1, ..., nvs}.

The auditor checks the integrity of each voter session item by ItemVer(bvs;i, YA)
(algorithm 3) and that its content ci = (Vi, Yi, Hi) relates to an eligible voter,
i.e. Vi ∈ V .

Then, for identity-based voter authorization mode, the voter authorizer has to
provide all identity tokens σid;i,j generated by each identity provider Ij ∈ I,
that were used to create the voter session item bvs;i. The auditor verifies that
all voter session items have been authorized after successful authentication.
The auditor checks that the identity tokens are associated with the voter ses-
sion item Hi = H(σid;i,1||...||σid;i,ni), where Hi is the authentication fingerprint
from the item content. Also, it checks the validity of the identity tokens by
SigVer(YIj , σid;i,j ,Vi) (algorithm 29). In case any of the validations fail, that
discovers an attempt of the voter authorizer to create a fraudulent voter session.

Voter identities used for third-party identity providers are considered personal
data and cannot be publicly disclosed on the bulletin board. Therefore, eligibil-
ity verifiability is a administrative auditing step and is available only to election
officials.

For credential-based voter authorization mode, the auditor is provided with all
voter authentication public keys {Yauth;1, ..., Yauth;nv

} for each of the voters in
V . The voter authorizer provides all proofs of credentials {PK1, ..., PKnvs}
associated with each voter session item from the bulletin board. The auditor
checks thatHi = H(PKi) and DLVer(PKi, {G}, {Yauth;i}) (algorithm 15), where
Hi is the authentication fingerprint from the content of the voter session item
bvs;i and Yauth;i is the authentication public key of voter Vi. In case one of the
validations fails, that discovers an attempt of the voter authorizer to create a
fraudulent voter session.

Recall from section 4.5 that the proof of credentials PKi is initiated by cre-
dentials generated based on a minimum of 80 bits of entropy. Being so low on
entropy, the voter authentication public keys and proofs of credentials are not
publicly disclosed to prevent a brute-force attack. Therefore, they are auditable
only by the election officials.

46

5.3 Public auditing process

Public auditing processes are accessible to anybody. They are used to validate
that the entire election is run correctly. This audit is typically run at the end
of the election period by certified auditors that will validate or invalidate an
election result. Nevertheless, it could be run both during the election phase or
when the election has finished by any public person with access to the public
bulletin board and suitable verification algorithms.

As part of the public auditing, the following verification steps are included:

• During the election phase and after the election has finished, anybody
can verify the integrity of the data published on the bulletin board, as
explained in section 5.3.1.

• After a result has been initiated (i.e., an extraction data item has been
published as in section 4.9.1), anybody can verify that the extraction
procedure has been performed correctly, as explained in section 5.3.2.

• After a result has been computed and published, any public auditor can
check the correctness of the result by verifying the result computation, as
presented in section 5.3.3.

5.3.1 Integrity of the bulletin board

This verification step checks that only qualified actors have published items on
the bulletin board. It also checks that no items have been removed or tampered
with once posted on the bulletin board. This is achieved by checking the in-
tegrity of the hash structure of the bulletin board (referred to as the history
property of the bulletin board in section 2.2) and by checking the validity of the
digital signatures of each item.

Formally, given a complete bulletin board or a portion of it, in the form of a
list of items b = {b1, ..., bn}, any public auditor can check the integrity of the
list by running HistoryVer(b, h′1) (algorithm 2), where h′1 is the address of the
previous item in the history. When b is a complete bulletin board (i.e., b1 is a
genesis item), then h′1 must be equal to ∅, as the genesis item has no previous
address.

Additionally, the auditor checks the correctness of the chosen parameters of each
item bi ∈ b (i.e., that it has a properly structured content ci and that it refer-
ences a proper parent pi both according to the rules specified in appendix A).
Then the auditor validates the integrity of each item by ItemVer(bi, YWi), where
YWi

is the public key of the writer of the ith item. Note that, as described in
appendix A, depending on the type of item, one of the following actors can be
the writer of an item: the digital ballot box D, the election administrator E , the
voter authorizer A or a specific voter V. The public key of any of these actors
must be retrieved from the content of the bulletin board itself, such as:

47

• the public keys of the election administrator YE and of the digital ballot
box YD are listed in the genesis item,

• the public key of the voter authorizer YA is listed in an actor configuration
item that defines the voter authorizer role,

• each public key Yj of the jth voter is introduced by a voter session item.

If any verification steps mentioned above fail, then b does not represent a valid
bulletin board trace.

5.3.2 Verification of the extraction procedure

Given a bulletin board trace b, with an extraction data item included in b, any
public auditor can verify the correctness of the list of cryptograms ~~e0 present in
the extraction data item. Recall from section 4.9.1 that ~~e0 lists all votes that
will make up the election result.

The auditor reruns the extraction procedure on the bulletin board b, applying
all filtering rules specified in section 4.9.1 to recompute the initial mixed board
~~e ′0. If it is identical with ~~e0, then the extraction has been performed correctly.

5.3.3 Result verification

After a result has been published via an extraction confirmation item (as de-
scribed in section 4.9.4), any public auditor can verify the correctness of the
result by verifying the mixing and decryption procedures of each trustee that
participated in the result ceremony. This checks that no votes have been tam-
pered with, removed or added during mixing and decryption. The data that an
auditor needs to collect comes exclusively from the bulletin board:

• the initial mixed board ~~e0 is listed in the extraction data item,

• the encryption keys Yenc and the list of trustees T = {T1, ..., Tnt
}, together

with their public keys {YT1 , ..., YTnt
} and public polynomial coefficients

{PT1,1, ..., PTnt ,t−1}, are listed in the threshold configuration item, where
nt is the amount of trustees,

• the subset of trustees that participated in the mixing and decryption
phases τ ⊂ {1, ..., nt} is listed in the extraction confirmation item,

• all the intermediate mixed boards that trustees produced ~~ei, with i ∈ τ ,
and their respective proofs of correct mixing (PMi, ASi) are listed in the
extraction confirmation item,

• all the partial decryptions that trustees produced
~~Si, with i ∈ τ , and their

respective proofs of correct decryption PKi are listed in the extraction
confirmation item,

48

• the raw result
~~V is listed in the extraction confirmation item.

First, the auditor validates each intermediate mixed board by running algo-
rithm 37 MixVer(PMi, ASi, Yenc, ~~ei−1, ~~ei), for each i ∈ τ . Next, the auditor vali-

dates the proof of each partial decryption by PartialDecryptionVer(~~e,
~~Si, PKi, sYi)

(algorithm 7), for each i ∈ τ , where sYi is the public share of the trustee Ti com-

puted as in appendix B.5, and ~~e is the mixed board produced by the last trustee
in τ .

If all partial decryptions are valid, the auditor aggregates them together to

recompute the raw result
~~V ← FinalizeDecryption(~~e, {~~Si|i ∈ τ}) (algorithm 8).

The list of decrypted votes
~~V should be identical to the one published in the

result confirmation item. If any validation step fails, the result is considered
untrustworthy.

By having the election result auditable, the election protocol achieves one of
the end-to-end verifiability properties, i.e., verification that all votes have been
counted as registered.

49

6 Conclusion

This article presents a new election protocol designed to be verifiable from end
to end, protect against certain attacks, ensure the security and privacy of elec-
tion data, and confirm voter eligibility while maintaining their anonymity. The
design distributes tasks and responsibilities among multiple groups to limit an
attacker’s influence. Although it can’t defend against attackers with almost un-
limited computing power or the ability to break cryptographic primitives, we
are developing a subsequent version to address these limitations. Additionally,
the current protocol doesn’t guarantee perpetual privacy, as an attacker control-
ling a majority of trustees could compromise anonymity and access confidential
data. This limitation represents another area for improvement.

Details on the methodologies employed to actualize each property are provided
below:

Voter Eligibility: During the election phase, only a predefined set of voters
are allowed to cast a ballot on the bulletin board. The list of eligible voters V =
{V1, ...,Vnv} is defined, during the pre-election phase, in the voter authorizer
service, which authorizes the use of a public key Yi correlated with voter identity
Vi. The public key authorization is done by publishing a voter session item
on the bulletin board after voter Vi has successfully authenticated. All voter
authorizations performed by the voter authorizer are auditable as described in
section 5.2.

When voter athorization mode is identity-based, voters successfully authenti-
cate to the voter authorizer by authenticating to all identity providers I =
{I1, ..., Ini}. That means, to falsely acquire an authorized public key (to cast a
vote with), one must forge successful authentication with all identity providers
I. Therefore, our protocol has the eligibility property on the assumption that
there is at least one honest identity provider.

In case an election is configured to use only one identity provider (i.e., ni = 1),
then that identity provider could, in fact, authenticate and cast a vote on behalf
of any voter. Therefore, if voter authentication is provided by a single identity
provider, that must be assumed trustworthy.

When voter athorization mode is credential-based, voters successfully authen-
ticate to the voter authorizer by submitting a proof of credentials, which is
calculated based on all credentials received from all credentials authorities C =
{C1, ..., Cnc} during the pre-election phase (as described in section 4.5). There-
fore, our protocol has the eligibility property on the assumption that there is at
least one honest credentials authority.

In case an election is configured to use only one credentials authority (i.e.,
nc = 1), then it could, in fact, authenticate and cast a vote on behalf of any

50

voter (as it knows all credentials of all voters). Therefore, if voter credentials are
provided by a single credentials authority, that must be assumed trustworthy.

Votes Privacy: All votes that are posted on the bulletin board are encrypted
using the ElGamal cryptosystem based on elliptic curve cryptography. More-
over, using a t out of n threshold decryption scheme, entails that the decryption
of ballots form the bulletin board is possible only when at least t trustees are
willing to collaborate in a result computation.

Therefore, we claim that the protocol reaches the privacy property on the as-
sumption that there are at least t honest trustees, with 2/3 · n ≤ t ≤ n.

One can argue that, because the bulletin board data is public, somebody could
save all the data for long enough in the eventuality that the elliptic curve cryp-
tography might get broken or trustee keys get leaked. Then, voting data could
be decrypted contrary to our protocol. This indicates that demonstrates that
our protocl does not reach everlasting privacy. We take note of this fact and
accept it. As a mitigation measure, processes that envolve the use of trustee pri-
vate keys are performed in a air-gapped network, as described in ??. This lowers
the risk of keys being leaked, as they are never exposed to an internet-connected
machine.

Votes Anonymity: All votes are shuffled during the mixing phase before
they get decrypted, as describedin section 4.9.2. The mixing process is per-
formed by a mix-net of trustees that sequencially rearrange the list of votes in
a indistinguishable way. As a result of this process, when decrypted, there is no
connection between a plain-text vote and its voter.

Obviously, each trustee knows how it shuffled the list of ballots but does not
know how the other trustees shuffled it. Thus, it is crucial that trustees do not
collude and communicate with each other the shuffling parameters. We claim
that our protocol achieves the anonymity property on the assumption that there
is at least one honest trustee in the process.

However, ballot anonymity is bound by the amount of ballots that are mixed
together, which happens during each extraction. The most anonymity is reached
when all ballots are mixed together (i.e., there is a single result extraction at the
end of the election phase). Nevertheless, even if all ballots are mixed in a single
extraction, but there are only two ballots in total, and both contain a vote for
the same candidate, the anonymity is reduced to nothing, as both ballots are
identifiable.

Therefore, it is essential to require a result extractions to happen only on a
list with a substantial amount of ballots. This can be configured through the
extraction threshold value te set during the pre-election phase.

51

Ballot Replacement: Voters have the ability to perform the voting protocol
section 4.7 multiple times. Each time, they have to authenticate, get authorized,
encrypt a ballot and cast. If a voter has cast multiple ballots, only the last
submitted one is selected in the extraction process section 4.9.1 to be tallied.

Note that, ballot replacement is possible only until a partial result has extracted
one of that voter’s ballots. Hereafter, that voter is not allowed to cast another
ballot as it will not be tallied.

Data Integrity The data published on the bulletin board is publicly available
and it consists of the election configuration, voting data and result documenta-
tion. The data is stored as a hash-chain structure and, because of the history
and ancestry properties of the bulletin board (presented in section 2.2), any
attempts to tamper with the data is detectable by running the public audit
process section 5.3.

Every time a new item is appended on the bulletin board, it is accompanied by
a digital signature that proves the authorship of the data. During the public
auditing process, each item signature is verified, thus confirming the origin of
the data.

Therefore, assuming that genuine auditing software is used, we claim that our
protocol achieves the data integrity property. Both origin and authenticity
properties of the data can be validated due to the bulletin board construction.

Receipt-Freeness During the vote cryptogram generation process, described
in section 4.7.4, the voter and the digital ballot box collaborate together to build
the encrypted ballot ~e. During this process, the value of randomizer used in the
encryption of the vote (required by the ElGamal cryptosystem appendix B.4)
is split amongst the voter and the digital ballot box.

After the voter chooses to cast the ballot, as presented in section 4.7.5, the
digital ballot box destroys its part of the randomizer. The voter is now unable
to reproduce the entire value of the randomizer used to encrypt the ballot. As
a consequence, the voter is not able to produce cryptographic evidence that ~e
is an encryption of a particular vote ~V using only the publicly available data.

Therefore, we claim that our election protocol has the receipt-freeness property.

End-to-End Verifiability There are three levels of verifiability that different
actors can perform. Some steps are individually verifiable (i.e., only the voter
that is currently performing this step can verify that the process is happening
correctly), such as:

• verify that the vote is cast as intended by performing the ballot checking
process, described in section 4.8,

52

• verify that the vote is registered as cast by checking the vote confirmation
receipt as described in section 4.7.5 and section 5.1.2.

Some aspects of the election protocol are accessible only to election officials by
running the audits from section 5.2. These include validating:

• the voter eligibility,

Some other aspects of the election protocol are publicly verifiable. In other
words, even an active voter that has cast a ballot can validate the following:

• the integrity of the bulletin board,

• the fact that ballots have been correctly extracted and included in a result,

• the correctness of the result computation.

Our protocol provides mechanisms to verify the correct processing of a vote
throughout the protocol: form being cast and encrypted, to being registered on
the bulletin bord, to being extracted in a result. Therefore, we argue that our
election protocol is end-to-end verifiable.

Vote & Go An election result can be computed only by at least a threshold
of the trustees that must collaborate in a result computation. Voters are not
required in a result computation. One might say that voters can perform the
audit step that verifies whether their vote has been extracted only after a result
has been computed. That is, though, an optional step and it does not affect the
election protocol.

Replay Protection Given the bulletin board construction, the ancestry prop-
erty of the bulletin board entails that items must be appended in a particular
order. Recall form section 2.2 that they reference each other through the parent
address. At the same time, each address is unique, given the collision resistance
property of the hashing function H, as presented in appendix B.2.

Therefore, even if a significant amount of the activity that happens during the
election protocol is published on the bulletin board, it has replay protection.

In summary the proposed protocol provides a solid foundation for creating
a secure, verifiable digital voting system.

53

References

[1] J. Heather and D. Lundin, “The append-only web bulletin board,” in For-
mal Aspects in Security and Trust, P. Degano, J. Guttman, and F. Mar-
tinelli, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
242–256.

[2] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography, 1st ed. New York: Springer, 2004.

[3] J. Benaloh, “Simple verifiable elections,” in Proceedings of the
USENIX Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop, ser. EVT’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 5–5. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1251003.1251008

[4] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Proceedings
on Advances in Cryptology, ser. CRYPTO ’89. New York, NY, USA:
Springer-Verlag New York, Inc., 1989, pp. 307–315. [Online]. Available:
http://dl.acm.org/citation.cfm?id=118209.118237

[5] W. Trappe and L. C. Washington, Introduction to Cryptography with Cod-
ing Theory (2Nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 2005.

[6] N. I. of Standards and Technology, “Secure hash standard (shs),” 2012.

[7] S. S. M. Chow, C. Ma, and J. Weng, “Zero-knowledge argument for si-
multaneous discrete logarithms,” in Computing and Combinatorics, M. T.
Thai and S. Sahni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 520–529.

[8] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Advances in Cryptology — EUROCRYPT ’91, D. W. Davies, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 522–526.

[9] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979. [Online]. Available: http://doi.acm.org/10.1145/
359168.359176

[10] N. I. of Standards and Technology, “Advanced encryption standard,” NIST
FIPS PUB 197, 2001.

[11] D. H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” RFC 5869, May 2010. [Online]. Available:
https://www.rfc-editor.org/info/rfc5869

[12] K. Moriarty, B. Kaliski, and A. Rusch, “PKCS #5: Password Based
Cryptography Specification Version 2.1,” RFC 8018, Jan. 2017. [Online].
Available: https://www.rfc-editor.org/info/rfc8018

54

http://dl.acm.org/citation.cfm?id=1251003.1251008
http://dl.acm.org/citation.cfm?id=1251003.1251008
http://dl.acm.org/citation.cfm?id=118209.118237
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc8018

[13] O. O. W. A. S. P. Foundation, “OWASP cheat sheet series,” https:
//cheatsheetseries.owasp.org/cheatsheets/Password Storage Cheat Sheet.
html#pbkdf2, 2023.

[14] C. P. Schnorr, “Efficient identification and signatures for smart cards,” in
Advances in Cryptology — CRYPTO’ 89 Proceedings, G. Brassard, Ed.
New York, NY: Springer New York, 1990, pp. 239–252.

[15] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” in Advances in Cryptology — CRYPTO ’91, J. Feigenbaum,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–140.

[16] J. Bootle and J. Groth, “Efficient batch zero-knowledge arguments for low
degree polynomials,” Cryptology ePrint Archive, Report 2018/045, 2018,
https://ia.cr/2018/045.

[17] J. Groth, “A verifiable secret shuffle of homomorphic encryptions,”
IACR Cryptol. ePrint Arch., p. 246, 2005. [Online]. Available:
http://eprint.iacr.org/2005/246

[18] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-
tification and signature problems,” in Advances in Cryptology — CRYPTO’
86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 186–194.

55

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://ia.cr/2018/045
http://eprint.iacr.org/2005/246

A Bulletin board item types

All item types that can appear on the bulletin board are described in the following list and are grouped into the following four
categories:

Item Writer Content Parent type Validation rules

genesis D elliptic curve domain parameters
(p, a, b,G, q, h),
digital ballot box public key YD,
election admin public key YE

none It is the first item on the board.

election
configuration

E election title,
enabled languages

latest
configuration
item

The first item defines the configuration.
The following items update the configura-
tion.

contest
configuration

E contest identifier,
contest marking rules, question
type, and result rules,
candidate labels {m1, ...,mnc

}

latest
configuration
item

The first item with a contest identifier de-
fines the configuration of that contest.
The following items with the same contest
identifier update the configuration of that
specific contest.

threshold
configuration

E ballot encryption key Yenc,
threshold setup t out-of nt,
trustees public keys {YT1 , ..., YTnt

},
trustees public polynomial
coefficients {PT1,1, ..., PTnt ,t−1}

latest
configuration
item

This item cannot be updated.

56

Item Writer Content Parent type Validation rules

actor
configuration

E actor identifier,
actor role,
actor public key

latest
configuration
item

The first item with an actor identifier de-
fines the configuration of that actor.
The following items with the same actor
identifier update the configuration of that
specific actor.
The role can be: Voter Authorizer A.

voter
authorization
configuration

A the voter authorization mode,
configuration of all Identity
Providers {I1, ..., Ini

}

latest
configuration
item

The first item defines the voter authoriza-
tion configuration.
The following items update the configura-
tion.

voting round E voting round identifier,
start date and end date,
list of enabled contest identifiers

latest
configuration
item

The first item with a voting round identi-
fier defines the configuration of that vot-
ing round.
The following items with the same voting
round identifier update the configuration
of that specific voting round.

Configuration items

57

Item Writer Content Parent type Validation rules

voter session A voter identifier,
voter public key Yi,
voter weight,
voter authentication fingerprint
list of assigned contest identifiers

latest
configuration
item

This item can be created only during the
election phase.
The following voter session items with the
same voter identifier overwrite the previ-
ous voter sessions of that voter.

voter
encryption
commitment

Vi commitment cv the voter
session item

The voter’s public key Yi is defined in the
voter session item.

server
encryption
commitment

D commitment cd the voter
encryption
commitment
item

Only one server encryption commitment
item can reference the voter encryption
commitment item.
This item is created in response to the
voter encryption commitment item being
published.

ballot
cryptograms

Vi cryptograms ~ei the server
encryption
commitment
item

Only one ballot cryptograms item can ref-
erence the server encryption commitment
item.
The voter’s public key Yi is defined in the
voter session item.

cast request Vi the ballot
cryptograms
item

There can be either a cast request or a
spoil request item referencing the ballot
cryptograms item.
The voter’s public key Yi is defined in the
voter session item.

58

Item Writer Content Parent type Validation rules

spoil request Vi the ballot
cryptograms
item

There can be either a cast request or a
spoil request item referencing the ballot
cryptograms item.
The voter’s public key Yi is defined in the
voter session item.

Voting items

59

Item Writer Content Parent type Validation rules

verification
track start

D the ballot
cryptograms
item

Only one verification track start item can
reference the ballot cryptograms item.
This item is created in response to the
ballot cryptograms item being published.

verifier X external verifier’s public key YX the
verification
track start
item

This is a self-signed item, i.e., the author’s
public key is defined in the item itself.
Only one verifier item can reference the
verification track start item.

voter
commitment
opening

Vi encrypted commitment opening dv the verifier
item

Only one voter commitment opening item
can reference the verifier item.

server
commitment
opening

D encrypted commitment opening dd the voter
commitment
opening item

Only a server commitment opening item
can reference the voter commitment open-
ing item.

Hidden items

60

Item Writer Content Parent type Validation rules

extraction
intent

E latest config
item

extraction
data

D a fingerprint of the matrix of
cryptograms ~~e0

the
extraction
intent item

Only one extraction data item can refer-
ence the extraction intent item.
The item provides a way of aquiring the
list ~~e0 = {e1, ..., ene

}.

extraction
confirmation

E list of trustees that participated in
the result ceremony τ ⊂ {1, ..., nt},
fingerprints of each intermediate
mixed boards of cryptograms ~~ei
and proofs of correct mixing
(PMi, ASi),
fingerprints of each partial

decryption
~~Si and proofs of correct

decryption PKi,
signatures from each trustee Ti on
all the fingerprints above, where
i ∈ τ

the
extraction
data item

Only one extraction confirmation item
can reference the extraction data item.

Result items

61

B Algorithms background

The following is a compilation of algorithms utilized in the protocol, which are
neither developed nor maintained by our team. These are well-established third-
party algorithms that have been thoroughly examined and have subsequently
achieved the status of industry standard.

B.1 Elliptic Curve

B.1.1 Supported elliptic curves

The following elliptic curves are supported by our protocol. Each curve defines
a different set of the domain parameters (p, a, b,G, q, h).

• secp256k1,

• secp256r1,

• secp384r1,

• secp521r1.

B.1.2 Mapping a message on the Elliptic Curve

The algorithms of encoding and decoding a message into an elliptic curve point
is inspired from Introduction to Cryptography with Coding Theory [5]. Any

message represented as a byte array ~b with length |~b| ≤ `− 1 can be converted

into an elliptic curve point by M ← Bytes2Point(~b) (algorithm 12). The byte

array ~b is prepended with an adjusting byte b0 = 00 and appended (padded)
with 00 bytes such that it has a length of `, which is the elliptic curve byte size,
i.e., ` ← ByteLengthOf(p) (algorithm 11), where p is the prime of the elliptic
curve. The resulting byte array is prepended with the flag byte 02 and decoded
as an elliptic curve point M ← DecodePoint(b) (algorithm 9). If successful, then

M is the encoding of~b. Otherwise, the algorithm modifies x by incrementing the
adjusting byte and retries 255 times. If no valid point is found, the algorithm
returns failure.

By having one byte space to find a valid point on the curve, [5] shows that
the probability of all 256 x coordinates to generate non-valid points is 1/2256,

which is considered acceptable. Formally, M ← Bytes2Point(~b) (algorithm 12)

converts any message ~b of legal size, i.e., |~b| ≤ ` − 1 into a valid elliptic curve
point M with a negligible failure rate.

Recovering the message from an elliptic curve point M can be done by call-
ing ~b ← Point2Bytes(M) (algorithm 13). It decodes point M as a byte array
b← EncodePoint(M) (algorithm 10), disregards the rightmost 00 bytes and the
adjusting byte b0 and returns the rest of b as the message.

62

Note that we use standard algorithms (algorithms 9 and 10) from [5] for encoding
and decoding elliptic curve points as byte arrays in compact form. Therefore,
the inner implementation is absent.

Algorithm 9: DecodePoint(~b)→M

Data: The byte array ~b ∈ B`+1

Result: The point M ∈ P or failure

Algorithm 10: EncodePoint(M)→ ~b

Data: The point M ∈ P
Result: The encoded byte array ~b ∈ B`+1

Algorithm 11: ByteLengthOf(x)→ n

Data: The scalar x ∈ Z
Result: The byte length n ∈ N

Having these two algorithms, mapping a message on the Elliptic Curve is a sound
procedure as ~b = Point2Bytes(Bytes2Point(~b)), for all ~b ∈ B∗, with |~b| ≤ `− 1.

Examples of ` values, depending on elliptic curves, are:

• ` = 32 for Secp256k1,

• ` = 32 for Secp256r1,

• ` = 48 for Secp384r1,

• ` = 65 for Secp521r1.

B.2 Hash functions

A cryptographic hash function is an algorithm used for mapping data of arbitrary
size to data of fixed size, also called the hash value. A hash function is known
as a one-way function, i.e., one can easily verify that some input data maps to a
given hash value, but if the input data is unknown, it is infeasible to calculate it
given only a hash value. Another property of a cryptographic hash function is
collision resistance, which means that it is infeasible to find two different input
data with the same hash value.

We use 3 standard hash function as described in Secure Hash Standards [6],
with 3 output lengths, that match the byte size of the supported elliptic curves:

• SHA256 for Secp256k1 and Secp256r1,

• SHA384 for Secp384r1,

• SHA512 for Secp521r1.

63

Algorithm 12: Bytes2Point(~b)

Data: The byte array ~b = {b1, ..., bn} ∈ Bn
`← ByteLengthOf(p) // algorithm 11

if n > `− 1 then
return failure

end
m← `− n− 1
for i← 0 to 255 by 1 do

b0 ← i
~b ′ ← {02, b0, b1, ..., bn, 00, ..., 00︸ ︷︷ ︸

m times

}

if M ← DecodePoint(~b ′) is successful then
return M // M ∈ P

end

end
return failure

Algorithm 13: Point2Bytes(M)

Data: The point M ∈ P
`← ByteLengthOf(p) // algorithm 11

~b ′ = {02|03, b0, b1, ..., bn, 00, ..., 00︸ ︷︷ ︸
m times

} ← EncodePoint(M) // algorithm 10

~b← {b1, ..., bn} // ` = m+ n+ 1

return ~b // ~b ∈ B∗

We abuse notation and define the hash function H(data)→ x, where data ∈ B∗
and x ∈ Zp is the output of the hash function interpreted as a field element of
the elliptic curve in use.

B.3 Discrete Logarithm Proof

A discrete logarithm proof is a zero knowledge proof that proves knowledge of
value x, such that Y = [x]G, without revealing any other information about x.
Formally PK[(x) : Y = [x]G]. The most intuitive application of this could be
to prove the possession of the private key associated with a public key.

A bit more complex ZKP is the discrete logarithm equality proof that proves that
two different elliptic curve points Y, P ∈ P have the same elliptic curve discrete
logarithm x ∈ Zq in regards to two distinct generators G,H ∈ P, formally
PK[(x) : Y = [x]G ∧ P = [x]H].

An optimization in proving the discrete logarithm equality between multiple
points regarding their generators has been described in [7]. Using the optimized

64

algorithm to prove that

PK[(x) :

n∧
i=0

Yi = [x]Gi]

one can generate the proof PK = (K, c, r) by following the protocol described
in figure 11. The optimization consists of the fact that the commitment K is
just one point regardless of the value of n.

Prover Verifier

internal knowledge: x,
~G = {G0, ..., Gn}, ~Y = {Y0, ..., Yn}

internal knowledge:
~G = {G0, ..., Gn}, ~Y = {Y0, ..., Yn}

k ∈R Zq
zi ← H(i||Y1||...||Yn), with i ∈ {1, ..., n}

K ← [k](G0 +
n∑
i=1

[zi]Gi)

K

c ∈R Zq
c

r ← k + c · x (mod q)
r

zi = H(i||Y1||...||Yn), with i ∈ {1, ..., n}

verify that

[r](G0 +
n∑
i=1

[zi]Gi) = K + [c](Y0 +
n∑
i=1

[zi]Yi)

Figure 11: Protocol for proving multiple discrete logarithms

The proof of multiple discrete logarithms can be turned into a non-interactive
one by computing the challenge of the proof using a hash function based on
the available proof transcript (the generators, the commitment and the tar-

geted points). The proof is generated by the algorithm PK ← DLProve(x, ~G)

(algorithm 14), where ~G = {G0, ...Gn} is the list of generators.

A public verifier accepts the proof if the algorithm DLVer(PK, ~G; ~Y) returns

true, where ~Y = {Y0, ..., Yn}. The verification algorithm is described in algo-
rithm 15.

65

Algorithm 14: DLProve(x, ~G)

Data: The private key x ∈ Zq
The list of generators ~G = {G0, G1, ..., Gn} ∈ Pn+1

k ∈R Zq
for i← 1 to n by 1 do

zi ← H(i||Y1||...||Yn) // Yj = [x]Gj, j ∈ {1, ..., n}
end

K ← [k](G0 +
n∑
i=1

[zi]Gi)

c← H(~G||K||~Y)
r ← k + c · x (mod q)
PK ← (K, c, r)
return PK // PK ∈ P× Zq × Zq

Algorithm 15: DLVer(PK, ~G; ~Y)

Data: The proof PK = (K, c, r) ∈ P× Zq × Zq
The list of generators ~G = {G0, G1, ..., Gn} ∈ Pn+1

The list of public keys ~Y = {Y0, Y1, ..., Yn} ∈ Pn+1

for i← 1 to n by 1 do
zi ← H(i||Y1||...||Yn)

end

if c = H(~G||K||~Y)

and [r](G0 +
n∑
i=1

[zi]Gi) = K + [c](Y0 +
n∑
i=1

[zi]Yi) then

b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

B.4 Elgamal cryptosystem

B.4.1 Encryption scheme

The Elgamal cryptosystem is an asymmetric, randomized encryption scheme
where anybody can encrypt a message using the encryption key, resulting in a
cryptogram. In contrast, only the one with the decryption key can extract the
message of a cryptogram. The scheme consists of three algorithms KeyGen, Enc,
Dec.

An Elgamal key pair is a tuple (x, Y) ← KeyGen() (algorithm 16), where x is
a randomly chosen scalar representing the private decryption key and Y is an
elliptic curve point corresponding to the public encryption key.

The encryption algorithm e = (R,C) ← Enc(Y,M ; r) (algorithm 17) can be

66

Algorithm 16: KeyGen()

x ∈R Zq
Y ← [x]G
return (x, Y) // (x, Y) ∈ Zq × P

used by anybody in possession of the public encryption key Y to generate a
cryptogram on a message M , using the randomizer r. The cryptogram e can
be decrypted back to the original message M only by the one in possession of
the private decryption key x in the decryption algorithm M ← Dec(x, e) (algo-
rithm 18). Note that both Enc and Dec work on messages that are formatted
as elliptic curve points M ∈ P.

For the sake of notation, we define E = P × P as the set of all possible cryp-
tograms.

Algorithm 17: Enc(Y,M ; r)

Data: The encryption key Y ∈ P
The message M ∈ P
The randomizer r ∈ Zq

R← [r]G
S ← [r]Y
C ← S +M
e← (R,C)
return e // e ∈ E

Algorithm 18: Dec(x, e)

Data: The decryption key x ∈ Zq
The cryptogram e = (R,C) ∈ E

S ← [x]R
M ← C − S
return M // M ∈ P

B.4.2 Homomorphic Encryption

Elgamal encryption is a homomorphic encryption scheme concerning point ad-
dition. That means the component-wise addition of two cryptograms would
result in a new, valid cryptogram containing the two messages summed up.

Enc(Y,M1; r1) + Enc(Y,M2; r2) = Enc(Y,M1 +M2; r1 + r2)

The resulting encryption of the homomorphic addition of two cryptograms is
e′ = (R′, C ′)← HomAdd(e1; e2) (algorithm 19).

67

Algorithm 19: HomAdd(e1; e2)

Data: The first cryptogram e1 = (R1, C1) ∈ E
The second cryptogram e2 = (R2, C2) ∈ E

R′ ← R1 +R2

C′ ← C1 + C2

e′ ← (R′, C′)
return e′ // e′ ∈ E

Following the procedure above, a given cryptogram e = (R,C) can be re-
encrypted by homomorphically adding it to an empty cryptogram (i.e., an en-
cryption of the neutral point O) with randomizer r′ ∈R Zq. The result is a new,
randomly different cryptogram that contains the same message M . Generating
the new cryptogram e′ = (R′, C ′)← ReEnc(Y, e; r′) is described by algorithm 20.

Algorithm 20: ReEnc(Y, e; r′)

Data: The encryption key Y ∈ P
The initial cryptogram e = (R,C) ∈ E
The new randomizer r′ ∈ Zq

e2 ← Enc(Y,O; r′) // algorithm 17

e′ ← HomAdd(e, e2) // algorithm 19

return e′ // e′ ∈ E

Naturally, cryptogram addition can be expanded to multiplication to achieve
the fact that Enc(Y,M ; r)+Enc(Y,M ; r) = 2 ·Enc(Y,M ; r) = Enc(Y, [2]M ; 2 ·r).
The resulting encryption of the homomorphic multiplication of a cryptogram is
e′ = (R′, C ′)← HomMul(e;n) (algorithm 21).

Algorithm 21: HomMul(e;n)

Data: The initial cryptogram e = (R,C) ∈ E
The multiplication factor n ∈ Z

R′ ← [n]R
C′ ← [n]C
e′ ← (R′, C′)
return e′ // e′ ∈ E

B.5 Threshold Cryptosystem

A t out of n threshold cryptosystem is a homomorphic encryption scheme where
the decryption key is split among n key holders, called trustees T = {T1, ..., Tn}.
Anybody can encrypt a message using the encryption key. The decryption of a
message happens during a process in which at least t trustees have to collaborate
in a cryptographic protocol. It is recommended that t ≥ 2/3 · n. The entire

68

scheme was introduced in [8], which is based on mathematical principles of the
threshold cryptosystem [4, 9].

The key generation process concludes with the following (sx1, ..., sxn, Y), where
Y is the public encryption key, and each sxi is a private share of the decryption
key, one for each of the n trustees. The process is performed by all trustees
while being facilitated by a central entity called the server. The entire process
is described by the protocol called the threshold ceremony illustrated in figure 12.

During the threshold ceremony, each trustee Ti ∈ T generates a private-public
key pair (xi, Yi) ← KeyGen() (algorithm 16) and publishes the public key to
the server. The public encryption key is computed by the sum of the public
keys of all trustees Y =

∑n
i=1 Yi, while nobody knowing the decryption key

x =
∑n
i=1 xi because all xi are secret. Instead, all trustees work together to

distribute x such that any t trustees can find it when necessary.

Each trustee Ti ∈ T generates a polynomial function of degree t− 1

fi(z) = xi + pi,1 · z + ...+ pi,t−1 · zt−1

and publishes to the server the points {Pi,1, ..., Pi,t−1}, where each private-public
coefficient pair is (pi,k, Pi,k)← KeyGen() (algorithm 16), with k ∈ {1, ..., t− 1}.

When all public coefficients have been published, each trustee Ti ∈ T computes
a partial secret share of the decryption key for each of the other trustees by
si,j ← fi(j), where j ∈ {1, ..., n}. Then, Ti encrypts each partial secret share
with a key derived from the Diffie-Hellman key exchange mechanism with each
of the other trustees’ public keys, i.e., ci,j ← SymEnc(ki,j , si,j) (algorithm 22),
where ki,j ← DerSymKey(xi, Yj) (algorithm 24). Finally, all trustees publish to
the server all encrypted partial secret shares of the decryption key.

By encrypting the partial secret shares with each trustee’s public keys, we ensure
that only that specific trustee can read his partial secret shares of the decryption
key. This procedure is a slight deviation from [8], which we introduced to
simulate a private communication channel between trustees.

Finally, each trustee Ti ∈ T downloads from the server their encrypted partial
secret shares cj,i, with j ∈ {1, ..., n} and decrypts them sj,i ← SymDec(ki,j , cj,i)
(algorithm 23), where ki,j ← DerSymKey(xi, Yj) (algorithm 24). Recall form
appendix B.7.1 that ki,j = kj,i as DerSymKey(xi, Yj) = DerSymKey(xj , Yi),
when Yi = [xi]G and Yj = [xj]G.

Then, each trustee Ti ∈ T validates that the partial secret shares generated by
all the other trustees are consistent with their respective polynomial coefficients
[sj,i]G = Yj +

∑t−1
k=1[ik]Pj,k, with j ∈ {1, ..., n}. If all partial secret shares

validate, then trustee Ti computes his secret share of the decryption key by
sxi ←

∑n
j=1 sj,i and stores it privately until needed for decryption. At the

end of the threshold ceremony, for each trustee Ti ∈ T , the public share of the

69

decryption key (sYi = [sxi]G) is publicly computable by the following:

sYi ←
n∑
j=1

(Yj +

t−1∑
k=1

[ik]Pj,k).

The encryption algorithm of the threshold cryptosystem is identical to the al-
gorithm described in appendix B.4.1: e = (R,C)← Enc(Y,M ; r).

70

Server Trustee Ti

~Y ← {}, ~~P ← {}, ~~c← {}
invitation

(xi, Yi)← KeyGen()
Yi

~Y ← ~Y ∪ {Yi}

when all Ti have published Yi

set t ∈ [2
3
n, ..., n]

t, ~Y = {Y1, ..., Yn}

(pi,k, Pi,k)← KeyGen(), with k ∈ {1, ..., t− 1}

fi(a) = xi +
t−1∑
k=1

pi,k · ak (mod q)

si,j ← fi(j), with j ∈ {1, ..., n}
ki,j ← DerSymKey(xi, Yj)
ci,j ← SymEnc(ki,j , si,j)

Pi,k, ci,j

~~P ← ~~P ∪ {Pi,k}, with k ∈ {1, ..., t− 1}
~~c← ~~c ∪ {ci,j}, with j ∈ {1, ..., n}

when all Ti have published Pi,k and ci,j

~~P = {P1,1, ..., Pn,t−1}, {c1,i, ..., cn,i}

sj,i ← SymDec(ki,j , cj,i), with j ∈ {1, ..., n}

verify that [sj,i]G = Yj +
t−1∑
k=1

[ik]Pj,k then:

sxi ←
n∑
j=1

sj,i (mod q)

validation

when all Ti have validated

Y ←
n∑
i=1

Yi

Figure 12: Threshold ceremony

71

The decryption protocol of the threshold cryptosystem is inspired by paper [4].
At least t trustees are needed to collaborate in the protocol described in figure 13
to extract the message M of a cryptogram e = (R,C). We define τ ⊂ {1, ..., n}
as the subset of trustees participating in the decryption protocol, with |τ | ≥ t.

Each trustee Ti, with i ∈ τ , computes a partial decryption Si ← [sxi]R and sends
it to the server, where sxi is trustee’s share of the decryption key. The trustee
also publishes a proof of correct decryption in the form of a non-interactive
discrete logarithm zero-knowledge proof PK ← DLProve(sxi, {G,R}) (algo-
rithm 14).

When receiving a partial decryption from a trustee Ti, the server accepts it if
the proof of correct decryption validates by DLVer(PK, {G,R}, {sYi, Si}) (al-
gorithm 15), where sYi is trustee’s public share of the decryption key. After it
received valid, partial decryptions from all trustees Ti, with i ∈ τ , the server ag-
gregates all partial decryptions together to finalize the decryption and to output
the message M . The aggregation process from [4] is described as follows:

Basically, M = C − [x]R, where x is the main decryption key that nobody
has. A possible way of computing [x]R is by calculating the Lagrange In-
terpolation Polynomial where each term is a partial decryption Si received
from a trustee Ti that needs to be multiplied by the Lagrange Interpolation
Polynomial coefficient which is λ(i) =

∏
j∈τ,j 6=i

−j
i−j (mod q). Formally, M ←

C −
∑
i∈τ [λ(i)]Si, with |τ | ≥ t. Note that the Lagrange Interpolation Polyno-

mial can be computed only when the number of terms is at least the degree of
the polynomial, i.e., |τ | ≥ t.

Server Trustee Ti
internal knowledge: e = (R,C),

{sY1, ..., sYn}
internal knowledge: sxi

τ ← {} e = (R,C)

Si ← [sxi]R
PK ← DLProve(sxi, {G,R})Si, PK

verify DLVer(PK, {G,R}, {sYi, Si}) then:

τ ← τ ∪ {i}

when enough Ti have published Si, i.e. |τ | ≥ t

λ(i)←
∏

j∈τ,j 6=i

−j
i−j (mod q), with i ∈ τ

M ← C −
∑
i∈τ [λ(i)]Si

Figure 13: Threshold decryption

72

B.6 Symmetric encryption

A symmetric encryption scheme (SymEnc, SymDec) exists in case the message
to be encrypted is not an elliptic curve point but, instead, an arbitrary length
message m ∈ B∗, e.g., a text message. A difference from Elgamal cryptography
is that both encryption and decryption are done based on the same key that
needs to be known by both parties (i.e., the sender and the receiver).

We use standard AES encryption algorithms with 256-bit keys in Galois Counter
Mode as presented in [10]. Therefore, we define algorithm SymEnc(k,m) (al-
gorithm 22) that encrypts message m with the key k and returns the tuple
e = (iv, t, c), where iv is the initialization vector, t is the authentication tag and
c is the ciphertext. We also define algorithm SymDec(k, e) (algorithm 23) that
returns plain text m as the decryption of ciphertext c with key k. Note that
m is returned only if the authentication tag t validates. Both algorithms use
standard implementation, therefore the inner workings are not described.

Algorithm 22: SymEnc(k,m)→ e = (iv, t, c)

Data: The symmetric key k ∈ B256

The message m ∈ B∗
Result: The initialization vector iv ∈ B96

The authentication tag t ∈ B128

The ciphertext c ∈ B∗

Algorithm 23: SymDec(k, e)→ m

Data: The symmetric key k ∈ B256

The encryption e = (iv, t, c)
The initialization vector iv ∈ B96

The authentication tag t ∈ B128

The ciphertext c ∈ B∗
Result: The plain text m ∈ B∗ or failure

B.7 Key derivation

Key derivation functions are algorithms that convert one source of randomness
and secrecy (such as private keys or passwords) into different formats that can
be used in different applications.

B.7.1 Diffie Hellman key derivation function

The strategy to convert from a private-public key infrastructure into a sym-
metric key is to use a key encapsulation method based on Diffie Hellman Key
Exchange.

73

For two entities that have a private-public key infrastructure in place (i.e., entity
1 has key pair (x1, Y1) and entity 2 has key pair (x2, Y2), where Y1 = [x1]G
and Y2 = [x2]G) and that know each other (i.e., entity 1 knows Y2 and entity 2
knows Y1), they can both derive symmetric key k by running DerSymKey(x1, Y2)
as entity 1 and DerSymKey(x2, Y1) as entity 2.

The algorithm performs a Diffie Hellman key exchange to reach a shared secret
S ← [x1]Y2 = [x2]Y1 = [x1 + x2]G. The resulting value is used as the keying
material of a hash-based key derivation function HKDF (algorithm 25) to convert
it into a uniform key k. Particularly, no salt and info arguments are used (i.e.,
salt and info are set to ∅), therefore only one symmetric key can be derived
from two particular key pairs (x1, Y1) and (x2, Y2).

The implementation of the key derivation function algorithm 25 is described in
[11], therefore omitted here.

Algorithm 24: DerSymKey(x, Y)

Data: A private key x ∈ Zq
A public key Y ∈ P

salt← ∅
info← ∅
length← 256
S ← [x]Y
k ← HKDF(S, salt, info, length)
return k // k ∈ B256

Algorithm 25: HKDF(ik, s, i, `)→ k

Data: The input keying material ik ∈ B∗
The salt s ∈ B∗
The info i ∈ B∗
The output key length ` ∈ N

Result: The derived key k ∈ B`

B.7.2 Password-based key derivation function

PBKDF2 (algorithm 27) is a standard algorithm, described in [12], that converts
passwords (arbitrary text) into keys that can be used in a cryptographic context.
The algorithm takes as arguments a pseudorandom function, a password, a salt,
an iteration count, and the desired length of the output key in bytes. The
internal operations of the function are omitted in this paper.

We use PBKDF2 as a building block for Pass2Key(m) (algorithm 26) that con-
verts password m into a key pair (x, Y). This can be seen as an alternative
algorithm to KeyGen() (algorithm 16) that can be used to get a deterministic
key pair based on some random seed.

74

Particularly, no salt is used (i.e., salt is set to ∅), therefore, only one key pair
can be derived from password m. The amount of iterations is set to 600.000,
according to recommendations from [13]. The password is concatenated with a
counter that gets incremented until the output of the key derivation function
can be interpreted as a correct private key (i.e., the output bytes are decoded
as integer x, then checked whether x ∈ Zq).

Algorithm 26: Pass2Key(m)

Data: A text m ∈ B∗
salt← ∅
iterations← 600.000
`← ByteLengthOf(q) // algorithm 11

i← 0
repeat

x← PBKDF2(H,m||i, salt, iterations, `)
if x ≥ q then

i← i+ 1
continue

end

until x < q
Y ← [x]G
return (x, Y) // (x, Y) ∈ Zq × P

Algorithm 27: PBKDF2(H, p, s, i, `)→ k

Data: The hashing function H
The password p ∈ B∗
The salt s ∈ B∗
The iteration count i ∈ N
The output key length ` ∈ N

Result: The derived key k ∈ B`

B.8 Schnorr digital signature

The Schnorr digital signature scheme, introduced in [14], consists of a triple of al-
gorithms (KeyGen, Sign, SigVer), which are based on elliptic curve cryptographic
primitive. A Schnorr key pair is a tuple (x, Y) ← KeyGen() (algorithm 16),
where x is the random, private signing key and Y is the corresponding public
signature verification key.

Only the owner of the private signing key is able to generate a valid signature
σ = (c, s) ← Sign(x,m), on an arbitrary message m ∈ B∗. To generate a
signature, the signer follows algorithm 28. Given a signature σ on a message m,
anybody in possession of the public verification key Y can verify the validity of

75

the signature b ← SigVer(Y, σ;m), with b ∈ B which represents true or false.
The signature verification algorithm is described in algorithm 29.

Algorithm 28: Sign(x,m)

Data: The signing key x ∈ Zq
The message to be signed m ∈ B∗

r ∈R Zq
K ← [r]G
c← H(K||m)
s← r − c · x (mod q)
σ ← (c, s)
return σ // σ ∈ Zq × Zq

Algorithm 29: SigVer(Y, σ;m)

Data: The signature verification key Y ∈ P
The signature σ = (c, s) ∈ Zq × Zq
The signed message m ∈ B∗

K ← [s]G+ [c]Y
if c = H(K||m) then

b← 1 // signature is valid

else
b← 0 // signature is invalid

end
return b // b ∈ B

B.9 Pedersen commitment

A commitment scheme consists of a tuple of algorithms (Com, ComVer) that
enables a writer to commit to a specific message m while keeping it secret. At
a later point, if appropriate, the writer can open the commitment and reveal
the committed message m. The Pedersen Commitment Scheme is a randomized
commitment scheme introduced in [15]. Later, the scheme has been updated in
[16] to enable commitment computation on a list of messages ~m = {m1, ...,mn},
where each mi ∈ Zq, with i ∈ {1, ..., n}.

A prerequisite part of the commitment scheme is the existence of multiple gener-
ators (one for each message in the list ~m) in the subgroup such that the discrete
logarithm amongst any two of them is unknown. To support that, we define
the algorithm BaseGen that outputs a new generator H such that the value x is
unknown where H = [x]G.

In order to commit to messages ~m = {m1, ...,mn} a writer computes the com-
mitment C ← Com(~m; r) (algorithm 31), where r ∈R Zq is a randomizer. The

algorithm internally computes a list of generators ~G = {G1, ..., Gn} where each
Gi ← BaseGen(i) (algorithm 30), with i ∈ {1, ..., n}.

76

To reveal messages ~m, the writer needs to publish values ~m and r. A verifier
is convinced that the commitment C opens to messages ~m by running b ←
ComVer(C, ~m; r) (algorithm 32).

Algorithm 30: BaseGen(i)

Data: An index i ∈ N
j ← 0
repeat

x← H(G||i||j)
~b← 02|| byte representation of H(G||i||j)
H ← DecodePoint(~b) // algorithm 9

if H is invalid then
j ← j + 1
continue

end

until H is valid
return H // H ∈ P

Algorithm 31: Com(~m; r)

Data: The list of messages ~m = {m1, ...,mn} ∈ Znq
The randomizer r ∈ Zq

for i← 1 to n by 1 do
Gi ← BaseGen(i) // algorithm 30

end

C ← [r]G+
n∑
i=1

[mi]Gi

return C // C ∈ P

B.10 Groth argument of shuffle

A cryptographic shuffle (or mixing) is a process that, given as input a list of
cryptograms, outputs another list of cryptograms such that each cryptogram
from the input list is re-encrypted and permuted in a random new order, forming
the output list. This can be further extended to mixing a matrix of cryptograms,
where all cryptograms are re-encrypted, and rows are permuted in a new order.
Formally, given a matrix of cryptograms ~~e = {e1,1, ..., en,`} ∈ En,`, with each
ei,j = (Ri,j , Ci,j), i ∈ {1, ..., n} and j ∈ {1, ..., `}, a matrix of randomizers
~~r = {r1,1, ..., rn,`} ∈ Zn×`q and a permutation ψ : {1, ..., n} ← {1, ..., n} from
the set Ψn of all permutations of n elements, the shuffle algorithm outputs
the matrix ~~e ′ = {e′1,1, ..., e′n,`} ← Shuffle(Y,~~e;~~r, ψ) (algorithm 33) where each
e′i,j = (R′i,j , C

′
i,j)← ReEnc(Y, ek,j ; ri,j) (algorithm 20) for k = ψ(i).

The interesting aspect of mixing is how to prove in zero-knowledge that the
shuffling calculations were done correctly and that no content of the cryptograms

77

Algorithm 32: ComVer(C, ~m; r)

Data: The commitment C ∈ P
The list of messages ~m = {m1, ...,mn} ∈ Znq
The randomizer r ∈ Zq

for i← 1 to n by 1 do
Gi ← BaseGen(i) // algorithm 30

end

if C = [r]G+
n∑
i=1

[mi]Gi then

b← 1 // commitment is valid

else
b← 0 // commitment is invalid

end
return b // b ∈ B

Algorithm 33: Shuffle(Y,~~e, ~~r, ψ)

Data: The encryption key Y ∈ P
The matrix of initial cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`

The matrix of randomizers ~~r = {r1,1, ..., rn,`} ∈ Zn×`q

The permutation ψ ∈ Ψn

for i← 1 to n by 1 do
for j ← 1 to ` by 1 do

e′i,j ← ReEnc(Y, eψ(i),j ; ri,j) // algorithm 20

end

end
~~e ′ ← {e′1,1, ..., e′n,`}
return ~~e ′ // ~~e ′ ∈ En×`

has been changed. Our mixing proof is based on an algorithm presented by
Jens Groth in [17]. The proof uses as a building block an Argument for Shuffle
of Known Contents, which is based on proving the knowledge of opening a
commitment to a permutation of a set of known messages. The strategy of
Groth’s algorithm is to reduce the problem of proving that ~~e ′ is the shuffled list
of re-encrypted cryptograms ~~e to the problem of proving the shuffling of some
known messages where the same permutation ψ is applied.

The protocol for the Argument of Shuffle of Known Contents is presented in
figure 14. During this protocol, the Prover convinces the Verifier that C is a
commitment to a set of known messages ~m = {m1, ...,mn} that are shuffled by
a secret permutation ψ. Note that, in this protocol, the Prover does not reveal
the permutation ψ.

The protocol for proving the correctness of a shuffle is illustrated in figure 15.
The Prover convinces the Verifier that the matrix of mixed cryptograms ~~e ′ =
{e′1,1, ..., e′n,`} is equivalent to the initial cryptograms matrix ~~e = {e1,1, ..., en,`},

78

where each cryptogram is re-encrypted, and rows of the initial matrix are shuf-
fled amongst each other. Note that, during mixing, the integrity of each row is
preserved, i.e., all columns of the matrix are shuffled by the same permutation.
The protocol uses, as a building block, the protocol for the Argument of Shuffle
of Known Contents, presented in figure 14.

Note that, in the description of the protocols, we abuse notation and define∑n
i=1 ei = HomAdd(e1; HomAdd(e2; ...HomAdd(en−1; en)...)) (algorithm 19) as

the homomorphic addition of multiple cryptograms, with each ei ∈ E.

Jens Groth suggests in [17] that the protocols can be turned into non-interactive
algorithms by using the Fiat-Shamir heuristic strategy [18] to compute the
random value x, e, ~t and λ by applying a hash function to the transcript of the
protocol. Therefore, we transform each protocol into a set of two algorithms
(one for generating a universally verifiable non-interactive proof and another for
verifying it).

Explicitly, to prove the correct mixing of cryptograms ~~e = {e1,1, ..., en,`} by

randomizers ~~r = {r1,1, ..., rn,`} and permutation ψ into the mixed cryptograms
~~e ′ = {e′1,1, ..., e′n,`}, the Prover generates the tuple (proof of mixing and ar-

gument of shuffle) (PM,AS) ← MixProve(ψ, Y,~~r,~~e,~~e ′) (algorithm 36), where
Y is the encryption key. Anybody can universally verify a proof of mixing by
MixVer(PM,AS, Y,~~e,~~e ′) (algorithm 37).

79

Prover Verifier

internal knowledge: ψ, r, ~m = {m1, ...,mn},
C = Com({mψ(1), ...,mψ(n)}; r)

internal knowledge: C,
~m = {m1, ...,mn}

x ∈R Zq
x

ra ∈R Zq, rd ∈R Zq rδ ∈R Zq
~d = {d1, ..., dn} ∈R Znq
δ1 ← d1, {δ2, ..., δn−1} ∈R Zn−2

q , δn ← 0

ai ←
i∏

j=1

(mψ(j) − x) (mod q), with i ∈ {1, ..., n}

uj ← −δj · dj+1 (mod q), with j ∈ {1, ..., n− 1}
vj ← δj+1 − (mψ(j+1) − x) · δj − aj · dj+1 (mod q)
~u← {u1, ..., un−1}, ~v ← {v1, ..., vn−1}
Cd ← Com(~d; rd), Cδ ← Com(~u; rδ), Ca ← Com(~v; ra)

Cd, Cδ, Ca

e ∈R Zq
e

z ← e · r + rd (mod q)
zδ ← e · ra + rδ (mod q)
fi ← e ·mψ(i) + di (mod q), with i ∈ {1, ..., n}
f ′j ← e · (δj+1 − (mψ(j+1 − x) · δj − aj · dj+1)− δj · dj+1 (mod q),
with j ∈ {1, ..., n− 1}

z, ~f = {f1, ..., fn},
zδ, ~f

′ = {f ′1, ..., f ′n−1}

φ1 ← f1 − e · x (mod q)

φi ←
φi−1 · (fi − e · x) + f ′i−1

e
(mod q),

with i ∈ {2, ..., n}

verify that
[e]C + Cd = Com(~f ; z),

[e]Ca + Cδ = Com(~f ′; zδ) and

φn = e ·
n∏
i=1

(mi − x) (mod q)

Figure 14: Argument of Shuffle of Known Contents

80

Prover Verifier

internal knowledge: ψ, Y , ~~r = {r1,1, ..., rn,`},
~~e = {e1,1, ..., en,`}, ~~e ′ = {e′1,1, ..., e′n,`},

with e′i,j = ReEnc(Y, eψ(i),j ; ri,j)

internal knowledge: Y ,
~~e = {e1,1, ..., en,`},
~~e ′ = {e′1,1, ..., e′n,`}

rp ∈R Zq, rd ∈R Zq, ~re = {re,1, ..., re,`} ∈R Z`q
~d = {d1, ..., dn} ∈R Znq
~p← {ψ(1), ..., ψ(n)}
C ← Com(~p; rp), Cd ← Com(~d; rd)

ē ′+j ←
n∑
i=1

ē ′i,j , with ē ′i,j ← HomMul(e′i,j ; di), with j ∈ {1, ..., `}

ed,j ← ReEnc(Y, ē ′+j ; re,j)

C, Cd, ~ed = {ed,1, ..., ed,`}

~t = {t1, ..., tn} ∈R Znq~t = {t1, ..., tn}

fi ← tψ(i) − di (mod q), with i ∈ {1, ..., n}

zj ← re,j +
n∑
i=1

tψ(i) · ri,j (mod q), with j ∈ {1, ..., `}

~f = {f1, ..., fn}, ~z = {z1, ..., z`}

λ ∈R Zq
λ

run the protocol from figure 14 to prove knowledge that C′ = [λ]C + Cd + Com(~f ; 0)
is a commitment to messages ~m = {λ · i+ ti, ..., λ · n+ tn} shuffled by permutation ψ.

ẽ+
j ←

n∑
i=1

ẽi,j , with ẽi,j ← HomMul(ei,j ; ti)

ẽ ′+j ←
n∑
i=1

ẽ ′i,j , with ẽ ′i,j ← HomMul(e′i,j ; fi)

verify that
HomAdd(ẽ ′+j ; ed,j) = ReEnc(Y, ẽ+

j ; zj),
with j ∈ {1, ..., `}

Figure 15: Argument of Shuffle of Cryptograms

81

Algorithm 34: ASKCProve(ψ; r; ~m;C)

Data: The permutation ψ ∈ Ψn

The randomizer r ∈ Zq
The list of known messages ~m = {m1, ...,mn} ∈ Znq
The public commitment C ∈ P

x← H(~m||C)
ra ∈R Zq, rd ∈R Zq rδ ∈R Zq
for i← 1 to n by 1 do

di ∈R Zq

ai ←
i∏

j=1

(mψ(j) − x) (mod q)

end
δ1 ← d1, δn ← 0
for i← 2 to n− 1 by 1 do

δi ∈R Zq
end
for i← 1 to n− 1 by 1 do

ui ← −δi · di+1 (mod q)
vi ← δi+1 − (mψ(i+1) − x) · δi − ai · di+1 (mod q)

end
~d← {d1, ..., dn}, ~u← {u1, ..., un−1}, ~v ← {v1, ..., vn−1}
Cd ← Com(~d; rd), Cδ ← Com(~u; rδ), Ca ← Com(~v; ra) // algorithm 31

e← H(~m||C||Cd||Cδ||Ca)
z ← e · r + rd (mod q), zδ ← e · ra + rδ (mod q)
for i← 1 to n by 1 do

fi ← e ·mψ(i) + di (mod q)
end
for i← 1 to n− 1 by 1 do

f ′i ← e · (δi+1 − (mψ(i+1 − x) · δi − ai · di+1)− δi · di+1 (mod q)
end
~f ← {f1, ..., fn}, ~f ′ ← {f ′1, ..., f ′n−1}
AS ← (Cd, Cδ, Ca, x, e, z, zδ, ~f, ~f

′)
return AS // AS ∈ P3 × Z4

q × Znq × Zn−1
q

82

Algorithm 35: ASKCVer(AS; ~m;C)

Data: The argument AS = (Cd, Cδ, Ca, x, e, z, zδ, ~f, ~f
′) ∈ P3 × Z4

q × Znq × Zn−1
q

The list of known messages ~m = {m1, ...,mn} ∈ Znq
The public commitment C ∈ P

φ1 ← f1 − e · x (mod q)
for i← 2 to n by 1 do

φi ←
φi−1 · (fi − e · x) + f ′i−1

e
(mod q)

end
if x = H(~m||C) and e = H(~m||C||Cd||Cδ||Ca)

and φn = e ·
n∏
i=1

(mi − x) (mod q)

and [e]C + Cd = Com(~f ; z) and [e]Ca + Cδ = Com(~f ′; zδ) // algorithm 31

then
b← 1 // argument is valid

else
b← 0 // argument is invalid

end
return b // b ∈ B

83

Algorithm 36: MixProve(ψ, Y,~~r,~~e,~~e ′)

Data: The permutation ψ ∈ Ψn

The encryption key Y ∈ P
The matrix of randomizers ~~r = {r1,1, ..., rn,`} ∈ Zn×`q

The matrix of initial cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`

The matrix of mixed cryptograms ~~e ′ = {e′1,1, ..., e′n,`} ∈ En×`, with
e′i,j = ReEnc(Y, eψ(i),j ; ri,j)

rp ∈R Zq, rd ∈R Zq
for i← 1 to n by 1 do

di ∈R Zq, pi ← ψ(i)
for j ← 1 to ` by 1 do

ē′i,j ← HomMul(e′i,j ; di) // algorithm 21

end

end
~d← {d1, ..., dn}, ~p← {p1, ..., pn}
C ← Com(~p; rp), Cd ← Com(~d; rd) // algorithm 31

for j ← 1 to ` by 1 do
re,j ∈R Zq

ed,j ← ReEnc(Y, ē ′+j ; re,j), with ē ′+j ←
n∑
i=1

ē ′i,j // algorithm 20

end
~ed ← {ed,1, ..., ed,`}
for i← 1 to n by 1 do

ti ← H(~~e ||~~e ′||C||Cd||~ed||i)
end
for i← 1 to n by 1 do

fi ← tψ(i) − di (mod q)
end
~f ← {f1, ..., fn}
for j ← 1 to ` by 1 do

zj ← re,j +
n∑
i=1

tψ(i) · ri,j (mod q)

end
~z ← {z1, ..., z`}
λ← H(~~e ||~~e ′||C||Cd||~ed||~f ||~z)
for i← 1 to n by 1 do

m′i ← λ · ψ(i) + tψ(i)

end
~m′ ← {m′1, ...,m′n}, r′ ← λ+ rd (mod q)
C′ ← Com(~m′; r′) // algorithm 31

AS ← ASKCProve(ψ; r′; ~m′;C′) // algorithm 34

PM ← (C,Cd, ~ed,~t, ~f, ~z, λ)

return (PM,AS) // PM ∈ P2 × E` × Z2n
q × Z`q × Zq

// AS ∈ P3 × Z4
q × Znq × Zn−1

q

84

Algorithm 37: MixVer(PM,AS, Y,~~e,~~e ′)

Data: The proof PM = (C,Cd, ~ed,~t, ~f, ~z, λ) ∈ P2 × E` × Z2n
q × Z`q × Zq

The argument of shuffle AS ∈ ×P3 × Z4
q × Znq × Zn−1

q

The encryption key Y ∈ P
The matrix of initial cryptograms ~~e = {e1,1, ..., en,`} ∈ En×`

The matrix of mixed cryptograms ~~e ′ = {e′1,1, ..., e′n,`} ∈ En×`
for i← 1 to n by 1 do

for j ← 1 to ` by 1 do
ẽi,j ← RHomMul(ei,j ; ti) // algorithm 21

ẽ ′i,j ← HomMul(e′i,j ; fi) // algorithm 21

end
mi ← λ · i+ ti (mod q)

end
for j ← 1 to ` by 1 do

ẽ+
j ←

n∑
i=1

ẽi,j

ẽ ′+j ←
n∑
i=1

ẽ ′i,j

end

C′ ← [λ]C + Cd + Com(~f ; 0) // algorithm 31

~m← {m1, ...,mn}
if ti = H(~~e ||~~e ′||C||Cd||~ed||i), where i ∈ {1, ..., n}
and λ = H(~~e ||~~e ′||C||Cd||~ed||~f ||~z)
and HomAdd(ẽ ′+j ; ed,j) = ReEnc(Y, ẽ+

j ; zj), where j ∈ {1, ..., `}
and ASKCVer(AS; ~m;C′) // algorithms 19, 20 and 35

then
b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

85

	Introduction
	Prerequisites
	Intended audience
	Scope and Objectives
	Notation conventions

	Solution entities
	Actors
	Election Administrator
	Digital Ballot Box
	Trustees
	Voters
	Voter Authorizer
	Identity Provider
	Credential Authority
	External Verifier
	Auditors

	Public bulletin board
	Voter Authorization
	Vote Submission Authorization - identity based
	Vote Submission Authorization - credential based

	Threshold cryptography

	Properties
	Voter Eligibility
	Votes Privacy
	Votes Anonymity
	Ballot Replacement
	Data Integrity
	Receipt-Freeness
	End-to-End Verifiability
	Vote & Go
	Replay Protection

	Election protocol
	Interactions with the Digital Ballot Box
	Writing on the bulletin board
	Verifying bulletin board items

	Bulletin board initialization
	Election configuration
	Election configuration
	Voting rounds configuration

	Actor authorization
	Voter authorization configuration

	Voter credentials distribution process
	Threshold ceremony
	Voting
	Voter authorization procedure - identity based
	Voter authorization procedure - credential based
	Mapping vote options on the Elliptic Curve
	Vote cryptogram generation process
	Vote confirmation receipt

	Ballot checking
	Ballot extraction
	Extraction procedure
	Mixing Phase
	Decryption Phase
	Result Interpretation

	Auditing
	Individual voter verifications
	Vote is cast as intended
	Vote is registered as cast

	Administration auditing process
	Eligibility verifiability

	Public auditing process
	Integrity of the bulletin board
	Verification of the extraction procedure
	Result verification

	Conclusion
	References
	Bulletin board item types
	Algorithms background
	Elliptic Curve
	Supported elliptic curves
	Mapping a message on the Elliptic Curve

	Hash functions
	Discrete Logarithm Proof
	Elgamal cryptosystem
	Encryption scheme
	Homomorphic Encryption

	Threshold Cryptosystem
	Symmetric encryption
	Key derivation
	Diffie Hellman key derivation function
	Password-based key derivation function

	Schnorr digital signature
	Pedersen commitment
	Groth argument of shuffle

